Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/faisalahmedbijoy/image_cryptography_with_autoencoders

Deep learning in image Cryptography
https://github.com/faisalahmedbijoy/image_cryptography_with_autoencoders

cryptography deep-learning image image-processing security

Last synced: about 2 months ago
JSON representation

Deep learning in image Cryptography

Awesome Lists containing this project

README

        

# Image_Cryptography_with_Autoencoders
Deep learning in image Cryptography

Image encryption and decryption using a chaotic map sequence and an autoencoder. The repository includes code for generating chaotic map sequences, shuffling and deshuffling images, preparing datasets, and computing performance metrics.

## Environment setup
```bash
conda env create --file environment.yml
```
**Install packages**

```bash
keygen==0.0.3
matplotlib==3.3.3
numpy==1.23.1
numpy==1.23.2
opencv_python==4.4.0.46
scikit_learn==0.23.2
skimage==0.0
tensorflow==2.3.0
```

To install the required packages, run the following command:

```bash
pip install -r requirements.txt
```
## 1. Chaotic map sequence generation
To generate the chaotic map sequence, run the following command:
```bash
python generate_chaotic_map_sequence.py
```
## 2. Shuffle and Deshuffle image
To shuffle and deshuffle an image, run the following command:
```bash
python shuffling_deshuffling_images.py
```
**Input image**

**Shuffle image**

![](images/shuffled_deshuffled_image/faisal_shuffled_image.png)

**Deshuffle image**

![](images/shuffled_deshuffled_image/faisal_deshuffled_image.png)

## 3. Encryption and Decryption of image using chaotic map sequence
To encrypt and decrypt an image using chaotic map sequence, run the following command:
```bash
python image_encryption_decryption.py
```
**Encryption of image**

![](images/encrypted_decrypted_images/faisal_encrypted_image.png)

**Decryption of image**

![](images/encrypted_decrypted_images/faisal_decrypted_image.png)

## 4. Dataset preparation
To prepare the dataset, run the following command:
```bash
python data_loader.py
```

## 5. Autoencoder for image encryption and decryption
To use the autoencoder for image encryption and decryption, run the following command:
```bash
python auto_encoder.py
```

**Model architecture**

![](images/model_architecture_and_performances/autoencoder_architecture.png)

**Model training**
```bash
python train.py
```
**Model loss performance graph**

![](images/model_architecture_and_performances/loss_graph.png)

## 6. Inferencing the model

*original_vs_compressed_vs_reconstruction*

```bash
python inference.py
```
**Original image**

![](images/model_architecture_and_performances/original_image.png)

**encoder compressed image**

![](images/model_architecture_and_performances/compressed_encoded_image.png)

**Decoder decompressed image**

![](images/model_architecture_and_performances/decompressed_decoded_image.png)

## 7. Performance metrics

- Structural Similarity Index (SSIM)

```bash
python structural_similarity_SSIM_calculation.py
```
- Number of pixel change rate (NPCR)

```bash
python nnumber_of_pixel_change_rate_NPCR_comparision.py
```
- NPCR computation

**image 1 output**

![](images/NPCR_images/NPCR_difference_1_faisal.png)

**image 2 output**

![](images/NPCR_images/NPCR_difference_2_faisal.png)

- Unified Average Changing Intensity (UACI)

```bash
python unified_average_changing_intensity_UACI_comparision.py
```
![](images/UACI_images/UACI_difference_faisal.png)

## 8. Salt and paper noise

```bash
python salt_and_pepper_noise.py
```

**Noisy image**

![](images/noisy_images/faisal_noisy.png)