Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/faranak-cs/rag
RAG using LangChain
https://github.com/faranak-cs/rag
retreival-augmented-generation
Last synced: 9 days ago
JSON representation
RAG using LangChain
- Host: GitHub
- URL: https://github.com/faranak-cs/rag
- Owner: faranak-cs
- Created: 2024-08-08T10:04:14.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-12-03T14:48:09.000Z (about 1 month ago)
- Last Synced: 2024-12-03T15:42:23.250Z (about 1 month ago)
- Language: Python
- Homepage:
- Size: 3.82 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Building RAG using LangChain
RAG models are seq2seq models with access to a retrieval mechanism providing relevant context documents at training and evaluation time.# Setup
0. Install [Python 3.12.5](https://www.python.org/downloads/). Install [Ollama](https://ollama.com/download) and pull down Llama3.1 using following command on Terminal:
```
ollama pull llama3.1
```
1. Clone the repo
```
https://github.com/faranak-cs/rag.git
```
2. Creat virtual envrionment
```
python3 -m venv rag.env
```
3. Activate virtual environment
```
source rag.env/bin/activate
```
4. Install packages
```
python -m pip install -r requirements.txt
```
5. Populate database
```
python populate_database.py
```
6. Ask questions
```
python query_data.py "How many players are there in monopoly?"
```
# Output
![Query](https://github.com/user-attachments/assets/1cfdd90d-c333-44d9-a8a9-9453d46dd3d9)