An open API service indexing awesome lists of open source software.

https://github.com/fbarffmann/cryptoclustering

Clustered over 100 cryptocurrencies using K-Means and PCA to identify market patterns. Optimized clustering retained 89.5% explained variance.
https://github.com/fbarffmann/cryptoclustering

clustering crypto-analysis data-visualization hvplot k-means machine-learning pandas pca python sklearn

Last synced: 1 day ago
JSON representation

Clustered over 100 cryptocurrencies using K-Means and PCA to identify market patterns. Optimized clustering retained 89.5% explained variance.

Awesome Lists containing this project

README

        

# Crypto Clustering with K-Means & PCA

Built a cryptocurrency clustering analysis using Python's machine learning tools. Analyzed crypto price and volume data, optimized clusters using PCA, and visualized the results to identify market patterns.

## Tools & Technologies Used

- Python
- Pandas
- Scikit-learn (K-Means Clustering & PCA)
- hvPlot
- StandardScaler
- Jupyter Notebooks

## File Structure

```text
.
├── Crypto_Clustering.ipynb # Full clustering analysis notebook
├── Resources/
│ └── crypto_market_data.csv # Cryptocurrency data
```

## Skills Demonstrated

- Clustering data with K-Means
- Finding optimal cluster count using Elbow Method
- Dimensionality reduction with PCA
- Visualizing multi-dimensional data with hvPlot
- Preparing machine learning-ready datasets

## Key Findings

- Analyzed price and volume changes for over 100 cryptocurrencies.
- Identified 4 optimal clusters using K-Means on scaled data.
- PCA optimization retained 89.5% of explained variance across 3 components.
- Visualizations showed clearer crypto market segmentation when using PCA.