An open API service indexing awesome lists of open source software.

https://github.com/fcakyon/balanced-loss

Easy to use class balanced cross entropy and focal loss implementation for Pytorch
https://github.com/fcakyon/balanced-loss

balanced-loss binary-crossentropy class-balanced-loss computer-vision cross-entropy cvpr deep-learning focal-loss image-classification loss-functions machine-learning pip pypi python pytorch

Last synced: about 1 month ago
JSON representation

Easy to use class balanced cross entropy and focal loss implementation for Pytorch

Awesome Lists containing this project

README

        




pypi version
total downloads
fcakyon twitter


Easy-to-use, class-balanced, cross-entropy and focal loss implementation for Pytorch.

## Theory

When training dataset labels are imbalanced, one thing to do is to balance the loss across sample classes.

- First, the effective number of samples are calculated for all classes as:

![alt-text](https://user-images.githubusercontent.com/34196005/180266195-aa2e8696-cdeb-48ed-a85f-7ffb353942a4.png)

- Then the class balanced loss function is defined as:

![alt-text](https://user-images.githubusercontent.com/34196005/180266198-e27d8cba-f5e1-49ca-9f82-d8656333e3c4.png)

## Installation

```bash
pip install balanced-loss
```

## Usage

- Standard losses:

```python
import torch
from balanced_loss import Loss

# outputs and labels
logits = torch.tensor([[0.78, 0.1, 0.05]]) # 1 batch, 3 class
labels = torch.tensor([0]) # 1 batch

# focal loss
focal_loss = Loss(loss_type="focal_loss")
loss = focal_loss(logits, labels)
```

```python
# cross-entropy loss
ce_loss = Loss(loss_type="cross_entropy")
loss = ce_loss(logits, labels)
```

```python
# binary cross-entropy loss
bce_loss = Loss(loss_type="binary_cross_entropy")
loss = bce_loss(logits, labels)
```

- Class-balanced losses:

```python
import torch
from balanced_loss import Loss

# outputs and labels
logits = torch.tensor([[0.78, 0.1, 0.05]]) # 1 batch, 3 class
labels = torch.tensor([0]) # 1 batch

# number of samples per class in the training dataset
samples_per_class = [30, 100, 25] # 30, 100, 25 samples for labels 0, 1 and 2, respectively

# class-balanced focal loss
focal_loss = Loss(
loss_type="focal_loss",
samples_per_class=samples_per_class,
class_balanced=True
)
loss = focal_loss(logits, labels)
```

```python
# class-balanced cross-entropy loss
ce_loss = Loss(
loss_type="cross_entropy",
samples_per_class=samples_per_class,
class_balanced=True
)
loss = ce_loss(logits, labels)
```

```python
# class-balanced binary cross-entropy loss
bce_loss = Loss(
loss_type="binary_cross_entropy",
samples_per_class=samples_per_class,
class_balanced=True
)
loss = bce_loss(logits, labels)
```

- Customize parameters:

```python
import torch
from balanced_loss import Loss

# outputs and labels
logits = torch.tensor([[0.78, 0.1, 0.05]]) # 1 batch, 3 class
labels = torch.tensor([0])

# number of samples per class in the training dataset
samples_per_class = [30, 100, 25] # 30, 100, 25 samples for labels 0, 1 and 2, respectively

# class-balanced focal loss
focal_loss = Loss(
loss_type="focal_loss",
beta=0.999, # class-balanced loss beta
fl_gamma=2, # focal loss gamma
samples_per_class=samples_per_class,
class_balanced=True
)
loss = focal_loss(logits, labels)
```

## Improvements

What is the difference between this repo and vandit15's?

- This repo is a pypi installable package
- This repo implements loss functions as `torch.nn.Module`
- In addition to class balanced losses, this repo also supports the standard versions of the cross entropy/focal loss etc. over the same API
- All typos and errors in vandit15's source are fixed
- Continuously tested on PyTorch 1.13.1 and 2.5.1
- Automatically selects loss module device based on logits

## References

https://arxiv.org/abs/1901.05555

https://github.com/richardaecn/class-balanced-loss

https://github.com/vandit15/Class-balanced-loss-pytorch