Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/fcakyon/yolov5-pip

Packaged version of ultralytics/yolov5 + many extra features
https://github.com/fcakyon/yolov5-pip

aws cli coco computer-vision deep-learning machine-learning neptune neptune-ai object-detection pip pypi python pytorch s3 ultralytics yolo yolov3 yolov4 yolov5

Last synced: 2 days ago
JSON representation

Packaged version of ultralytics/yolov5 + many extra features

Awesome Lists containing this project

README

        


packaged ultralytics/yolov5


pip install yolov5


total downloads
monthly downloads
fcakyon twitter


pypi version
ci testing
package testing

##

Overview


You can finally install YOLOv5 object detector using pip and integrate into your project easily.




This yolov5 package contains everything from ultralytics/yolov5 at this commit plus:


1. Easy installation via pip: pip install yolov5


2. Full CLI integration with fire package


3. COCO dataset format support (for training)


4. Full 🤗 Hub integration


5. S3 support (model and dataset upload)


6. NeptuneAI logger support (metric, model and dataset logging)


7. Classwise AP logging during experiments

##

Install

Install yolov5 using pip (for Python >=3.7)

```console
pip install yolov5
```

##

Model Zoo

Effortlessly explore and use finetuned YOLOv5 models with one line of code: awesome-yolov5-models


##

Use from Python

```python
import yolov5

# load pretrained model
model = yolov5.load('yolov5s.pt')

# or load custom model
model = yolov5.load('train/best.pt')

# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model(img)

# inference with larger input size
results = model(img, size=1280)

# inference with test time augmentation
results = model(img, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')

```

Train/Detect/Test/Export

- You can directly use these functions by importing them:

```python
from yolov5 import train, val, detect, export
# from yolov5.classify import train, val, predict
# from yolov5.segment import train, val, predict

train.run(imgsz=640, data='coco128.yaml')
val.run(imgsz=640, data='coco128.yaml', weights='yolov5s.pt')
detect.run(imgsz=640)
export.run(imgsz=640, weights='yolov5s.pt')
```

- You can pass any argument as input:

```python
from yolov5 import detect

img_url = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

detect.run(source=img_url, weights="yolov5s6.pt", conf_thres=0.25, imgsz=640)

```

##

Use from CLI

You can call `yolov5 train`, `yolov5 detect`, `yolov5 val` and `yolov5 export` commands after installing the package via `pip`:

Training

- Finetune one of the pretrained YOLOv5 models using your custom `data.yaml`:

```bash
$ yolov5 train --data data.yaml --weights yolov5s.pt --batch-size 16 --img 640
yolov5m.pt 8
yolov5l.pt 4
yolov5x.pt 2
```

- Start a training using a COCO formatted dataset:

```yaml
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
```

```bash
$ yolov5 train --data data.yaml --weights yolov5s.pt
```

- Train your model using [Roboflow Universe](https://universe.roboflow.com/) datasets (roboflow>=0.2.29 required):

```bash
$ yolov5 train --data DATASET_UNIVERSE_URL --weights yolov5s.pt --roboflow_token YOUR_ROBOFLOW_TOKEN
```

Where `DATASET_UNIVERSE_URL` must be in `https://universe.roboflow.com/workspace_name/project_name/project_version` format.

- Visualize your experiments via [Neptune.AI](https://neptune.ai/) (neptune-client>=0.10.10 required):

```bash
$ yolov5 train --data data.yaml --weights yolov5s.pt --neptune_project NAMESPACE/PROJECT_NAME --neptune_token YOUR_NEPTUNE_TOKEN
```

- Automatically upload weights to [Huggingface Hub](https://huggingface.co/models?other=yolov5):

```bash
$ yolov5 train --data data.yaml --weights yolov5s.pt --hf_model_id username/modelname --hf_token YOUR-HF-WRITE-TOKEN
```

- Automatically upload weights and datasets to AWS S3 (with Neptune.AI artifact tracking integration):

```bash
export AWS_ACCESS_KEY_ID=YOUR_KEY
export AWS_SECRET_ACCESS_KEY=YOUR_KEY
```

```bash
$ yolov5 train --data data.yaml --weights yolov5s.pt --s3_upload_dir YOUR_S3_FOLDER_DIRECTORY --upload_dataset
```

- Add `yolo_s3_data_dir` into `data.yaml` to match Neptune dataset with a present dataset in S3.

```yaml
# data.yml
train_json_path: "train.json"
train_image_dir: "train_image_dir/"
val_json_path: "val.json"
val_image_dir: "val_image_dir/"
yolo_s3_data_dir: s3://bucket_name/data_dir/
```

Inference

yolov5 detect command runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.

```bash
$ yolov5 detect --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```

Export

You can export your fine-tuned YOLOv5 weights to any format such as `torchscript`, `onnx`, `coreml`, `pb`, `tflite`, `tfjs`:

```bash
$ yolov5 export --weights yolov5s.pt --include torchscript,onnx,coreml,pb,tfjs
```

Classify

Train/Val/Predict with YOLOv5 image classifier:

```bash
$ yolov5 classify train --img 640 --data mnist2560 --weights yolov5s-cls.pt --epochs 1
```

```bash
$ yolov5 classify predict --img 640 --weights yolov5s-cls.pt --source images/
```

Segment

Train/Val/Predict with YOLOv5 instance segmentation model:

```bash
$ yolov5 segment train --img 640 --weights yolov5s-seg.pt --epochs 1
```

```bash
$ yolov5 segment predict --img 640 --weights yolov5s-seg.pt --source images/
```