Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fchollet/keras-resources
Directory of tutorials and open-source code repositories for working with Keras, the Python deep learning library
https://github.com/fchollet/keras-resources
Last synced: 8 days ago
JSON representation
Directory of tutorials and open-source code repositories for working with Keras, the Python deep learning library
- Host: GitHub
- URL: https://github.com/fchollet/keras-resources
- Owner: fchollet
- Created: 2016-07-28T21:15:05.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2024-02-12T09:00:44.000Z (10 months ago)
- Last Synced: 2024-10-16T14:04:47.765Z (about 2 months ago)
- Size: 36.1 KB
- Stars: 3,253
- Watchers: 216
- Forks: 888
- Open Issues: 18
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesomeai - Keras
- awesome-ai-awesomeness - Keras
- awesome-ai-awesomeness - Keras
README
# Keras resources
This is a directory of tutorials and open-source code repositories for working with Keras, the Python deep learning library.
If you have a high-quality tutorial or project to add, please open a PR.
## Official starter resources
- [keras.io](http://keras.io/) - Keras documentation
- [Getting started with the Sequential model](http://keras.io/getting-started/sequential-model-guide/)
- [Getting started with the functional API](http://keras.io/getting-started/functional-api-guide/)
- [Keras FAQ](http://keras.io/getting-started/faq/)## Tutorials
- [Quick start: the Iris dataset in Keras and scikit-learn](https://github.com/fastforwardlabs/keras-hello-world/blob/master/kerashelloworld.ipynb)
- [Using pre-trained word embeddings in a Keras model](http://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html)
- [Building powerful image classification models using very little data](http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html)
- [Building Autoencoders in Keras](http://blog.keras.io/building-autoencoders-in-keras.html)
- [A complete guide to using Keras as part of a TensorFlow workflow](http://blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-tutorial.html)
- Introduction to Keras, from University of Waterloo: [video](https://www.youtube.com/watch?v=Tp3SaRbql4k) - [slides](https://uwaterloo.ca/data-science/sites/ca.data-science/files/uploads/files/keras_tutorial.pdf)
- Introduction to Deep Learning with Keras, from CERN: [video](http://cds.cern.ch/record/2157570?ln=en) - [slides](https://indico.cern.ch/event/506145/contributions/2132944/attachments/1258124/1858154/NNinKeras_MPaganini.pdf)
- [Installing Keras for deep learning](http://www.pyimagesearch.com/2016/07/18/installing-keras-for-deep-learning/)
- [Develop Your First Neural Network in Python With Keras Step-By-Step](http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/)
- [Practical Neural Networks with Keras: Classifying Yelp Reviews](http://www.developintelligence.com/blog/2017/06/practical-neural-networks-keras-classifying-yelp-reviews/) (Shows basic classification and how to set up a GPU instance on AWS)
- [Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras](http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/)
- [Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras](http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/)
- [Keras video tutorials from Dan Van Boxel](https://www.youtube.com/playlist?list=PLFxrZqbLojdKuK7Lm6uamegEFGW2wki6P)
- [Keras Deep Learning Tutorial for Kaggle 2nd Annual Data Science Bowl](https://github.com/jocicmarko/kaggle-dsb2-keras/)
- [Collection of tutorials setting up DNNs with Keras](http://ml4a.github.io/guides/)
- [Fast.AI - Practical Deep Learning For Coders, Part 1](http://course.fast.ai/) (great information on deep learning in general, heavily uses Keras for the labs)
- [Keras Tutorial: Content Based Image Retrieval Using a Convolutional Denoising Autoencoder](https://blog.sicara.com/keras-tutorial-content-based-image-retrieval-convolutional-denoising-autoencoder-dc91450cc511)
- [A Bit of Deep Learning and Keras](https://www.youtube.com/watch?v=UOEhojCzWrY&list=PLgJhDSE2ZLxaPX0jteHZG4skdj8ZrST9d): a multipart video introduction to deep learning and keras
- [Five simple examples of the Keras Functional API](http://www.puzzlr.org/the-keras-functional-api-five-simple-examples/)
- [Keras video tutorials playlist from Deeplizard](https://www.youtube.com/watch?v=RznKVRTFkBY&list=PLZbbT5o_s2xrwRnXk_yCPtnqqo4_u2YGL)## Books based on Keras
- [Deep Learning with Python](https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438/)
- [Deep Learning with Keras](https://www.amazon.com/Deep-Learning-Keras-Implementing-learning/dp/1787128423/)
- [Deep Learning and the Game of Go (MEAP)](https://www.manning.com/books/deep-learning-and-the-game-of-go)## Code examples
### Working with text
- [Reuters topic classification](https://github.com/fchollet/keras/blob/master/examples/reuters_mlp.py)
- [LSTM on the IMDB dataset (text sentiment classification)](https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py)
- [Bidirectional LSTM on the IMDB dataset](https://github.com/fchollet/keras/blob/master/examples/imdb_bidirectional_lstm.py)
- [1D CNN on the IMDB dataset](https://github.com/fchollet/keras/blob/master/examples/imdb_cnn.py)
- [1D CNN-LSTM on the IMDB dataset](https://github.com/fchollet/keras/blob/master/examples/imdb_cnn_lstm.py)
- [LSTM-based network on the bAbI dataset](https://github.com/fchollet/keras/blob/master/examples/babi_rnn.py)
- [Memory network on the bAbI dataset (reading comprehension question answering)](https://github.com/fchollet/keras/blob/master/examples/babi_memnn.py)
- [Sequence to sequence learning for performing additions of strings of digits](https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py)
- [LSTM text generation](https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py)
- [Using pre-trained word embeddings](https://github.com/fchollet/keras/blob/master/examples/pretrained_word_embeddings.py)
- [Monolingual and Multilingual Image Captioning](https://github.com/elliottd/GroundedTranslation)
- [FastText on the IMDB dataset](https://github.com/fchollet/keras/blob/master/examples/imdb_fasttext.py)
- [Structurally constrained recurrent nets text generation](https://github.com/nzw0301/keras-examples/blob/master/SCRNLM.ipynb)
- [Character-level convolutional neural nets for text classification](https://github.com/johnb30/py_crepe)
- [LSTM to predict gender of a name](https://github.com/divamgupta/lstm-gender-predictor)
- [Language/dialect identification with multiple character-level CNNs](https://github.com/boknilev/dsl-char-cnn)### Working with images
- [Simple CNN on MNIST](https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py)
- [Simple CNN on CIFAR10 with data augmentation](https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py)
- [Inception v3](https://github.com/fchollet/keras/blob/master/examples/inception_v3.py)
- [VGG 16 (with pre-trained weights)](https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3)
- [VGG 19 (with pre-trained weights)](https://gist.github.com/baraldilorenzo/8d096f48a1be4a2d660d)
- ResNet 50 (with pre-trained weights): [1](https://github.com/fchollet/keras/pull/3266/files) - [2](https://github.com/raghakot/keras-resnet)
- [FractalNet](https://github.com/snf/keras-fractalnet)
- [AlexNet, VGG 16, VGG 19, and class heatmap visualization](https://github.com/heuritech/convnets-keras)
- [Visual-Semantic Embedding](https://github.com/awentzonline/keras-visual-semantic-embedding)
- Variational Autoencoder: [with deconvolutions](https://github.com/fchollet/keras/blob/master/examples/variational_autoencoder_deconv.py) - [with upsampling](https://github.com/fchollet/keras/blob/master/examples/variational_autoencoder.py)
- [Visual question answering](https://github.com/avisingh599/visual-qa)
- [Deep Networks with Stochastic Depth](https://github.com/dblN/stochastic_depth_keras)
- [Smile detection with a CNN](https://github.com/kylemcdonald/SmileCNN)
- [VGG-CAM](https://github.com/tdeboissiere/VGG16CAM-keras)
- [t-SNE of image CNN fc7 activations](https://github.com/ml4a/ml4a-guides/blob/master/notebooks/tsne-images.ipynb)
- [VGG16 Deconvolution network](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/DeconvNet)
- Wide Residual Networks (with pre-trained weights): [1](https://github.com/asmith26/wide_resnets_keras) - [2](https://github.com/titu1994/Wide-Residual-Networks)
- Ultrasound nerve segmentation: [1](https://github.com/jocicmarko/ultrasound-nerve-segmentation) - [2](https://github.com/raghakot/ultrasound-nerve-segmentation)
- [DeepMask object segmentation](https://github.com/abbypa/NNProject_DeepMask)
- Densely Connected Convolutional Networks: [1](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/DenseNet) - [2](https://github.com/titu1994/DenseNet)
- [Snapshot Ensembles: Train 1, Get M for Free](https://github.com/titu1994/Snapshot-Ensembles)
- [Single Shot MultiBox Detector](https://github.com/rykov8/ssd_keras)
- [Popular Image Segmentation Models : FCN, Segnet, U-Net etc. ](https://github.com/divamgupta/image-segmentation-keras)### Creative visual applications
- [Real-time style transfer](https://github.com/awentzonline/keras-rtst)
- Style transfer: [1](https://github.com/fchollet/keras/blob/master/examples/neural_style_transfer.py) - [2](https://github.com/titu1994/Neural-Style-Transfer)
- [Image analogies](https://github.com/awentzonline/image-analogies): Generate image analogies using neural matching and blending.
- [Visualizing the filters learned by a CNN](https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py)
- [Deep dreams](https://github.com/fchollet/keras/blob/master/examples/deep_dream.py)
- GAN / DCGAN: [1](https://github.com/phreeza/keras-GAN) - [2](https://github.com/jacobgil/keras-dcgan) - [3](https://github.com/osh/KerasGAN) - [4](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/GAN)
- [InfoGAN](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/InfoGAN)
- [pix2pix](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/pix2pix)
- [DFI](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/DFI): Deep Feature Interpolation
- [Colorful Image colorization](https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/Colorful): B&W to color### Reinforcement learning
- [DQN](https://github.com/sherjilozair/dqn)
- [FlappyBird DQN](https://github.com/yanpanlau/Keras-FlappyBird)
- [async-RL](https://github.com/coreylynch/async-rl): Tensorflow + Keras + OpenAI Gym implementation of 1-step Q Learning from "Asynchronous Methods for Deep Reinforcement Learning"
- [keras-rl](https://github.com/matthiasplappert/keras-rl): A library for state-of-the-art reinforcement learning. Integrates with OpenAI Gym and implements DQN, double DQN, Continuous DQN, and DDPG.### Miscallenous architecture blueprints
- [Stateful LSTM](https://github.com/fchollet/keras/blob/master/examples/stateful_lstm.py)
- [Siamese network](https://github.com/fchollet/keras/blob/master/examples/mnist_siamese_graph.py)
- [Pretraining on a different dataset](https://github.com/fchollet/keras/blob/master/examples/mnist_transfer_cnn.py)
- [Neural programmer-interpreter](https://github.com/mokemokechicken/keras_npi)## Third-party libraries
- [Elephas](https://github.com/maxpumperla/elephas): Distributed Deep Learning with Keras & Spark
- [Hyperas](https://github.com/maxpumperla/hyperas): Hyperparameter optimization
- [Hera](https://github.com/jakebian/hera): in-browser metrics dashboard for Keras models
- [Kerlym](https://github.com/osh/kerlym): reinforcement learning with Keras and OpenAI Gym
- [Qlearning4K](https://github.com/farizrahman4u/qlearning4k): reinforcement learning add-on for Keras
- [seq2seq](https://github.com/farizrahman4u/seq2seq): Sequence to Sequence Learning with Keras
- [Seya](https://github.com/EderSantana/seya): Keras extras
- [Keras Language Modeling](https://github.com/codekansas/keras-language-modeling): Language modeling tools for Keras
- [Recurrent Shop](https://github.com/datalogai/recurrentshop): Framework for building complex recurrent neural networks with Keras
- [Keras.js](https://github.com/transcranial/keras-js): Run trained Keras models in the browser, with GPU support
- [keras-vis](https://github.com/raghakot/keras-vis): Neural network visualization toolkit for keras.## Projects built with Keras
- [RocAlphaGo](https://github.com/Rochester-NRT/RocAlphaGo): An independent, student-led replication of DeepMind's 2016 Nature publication, "Mastering the game of Go with deep neural networks and tree search"
- [BetaGo](https://github.com/maxpumperla/betago): Deep Learning Go bots using Keras
- [DeepJazz](https://github.com/jisungk/deepjazz): Deep learning driven jazz generation using Keras
- [dataset-sts](https://github.com/brmson/dataset-sts): Semantic Text Similarity Dataset Hub
- [snli-entailment](https://github.com/shyamupa/snli-entailment): Independent implementation of attention model for textual entailment from the paper ["Reasoning about Entailment with Neural Attention"](http://arxiv.org/abs/1509.06664).
- [Headline generator](https://github.com/udibr/headlines): independent implementation of [Generating News Headlines with Recurrent Neural Networks](http://arxiv.org/abs/1512.01712)
- [LipNet](https://github.com/rizkiarm/LipNet): independent implementation of [LipNet: End-to-End Sentence-level Lipreading](https://arxiv.org/abs/1611.01599).
- [caption_generator](https://github.com/anuragmishracse/caption_generator): An implementation of image caption generation in natural language inspired from [Show and Tell: A Neural Image Caption Generator](https://arxiv.org/pdf/1411.4555.pdf).
- [NMT-Keras](https://github.com/lvapeab/nmt-keras): Neural Machine Translation using Keras.
- [Conx](https://conx.readthedocs.io/) - easy-to-use layer on top of Keras, with visualizations (eg, no knowledge of numpy needed)