https://github.com/feifeibear/slurm-system-tensorflow-benchmark
https://github.com/feifeibear/slurm-system-tensorflow-benchmark
Last synced: 9 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/feifeibear/slurm-system-tensorflow-benchmark
- Owner: feifeibear
- License: apache-2.0
- Created: 2018-02-07T21:55:15.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2018-03-15T21:45:52.000Z (almost 8 years ago)
- Last Synced: 2025-01-23T00:41:15.719Z (11 months ago)
- Language: Python
- Size: 789 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Instructions for adding distributed benchmarks to continuous run:
1. You can add your benchmark file under
[tensorflow/benchmarks/scripts](https://github.com/tensorflow/benchmarks/tree/master/scripts) directory. The benchmark should accept `task_index`, `job_name`, `ps_hosts` and `worker_hosts` flags. You can copy-paste the following flag definitions:
```python
tf.app.flags.DEFINE_integer("task_index", None, "Task index, should be >= 0.")
tf.app.flags.DEFINE_string("job_name", None, "job name: worker or ps")
tf.app.flags.DEFINE_string("ps_hosts", None, "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", None, "Comma-separated list of hostname:port pairs")
```
2. Report benchmark values by calling `store_data_in_json` from your benchmark
code. This function is defined in
[benchmark\_util.py](https://github.com/tensorflow/benchmarks/blob/master/scripts/util/benchmark_util.py).
3. Create a Dockerfile that sets up dependencies and runs your benchmark. For
example, see [Dockerfile.tf\_cnn\_benchmarks](https://github.com/tensorflow/benchmarks/blob/master/scripts/Dockerfile.tf_cnn_benchmarks).
4. Add the benchmark to
[benchmark\_configs.yml](https://github.com/tensorflow/benchmarks/blob/master/scripts/benchmark_configs.yml)
* Set `benchmark_name` to a descriptive name for your benchmark and make sure
it is unique.
* Set `worker_count` and `ps_count`.
* Set `docker_file` to the Dockerfile path starting with `benchmarks/`
directory.
* Optionally, you can pass flags to your benchmark by adding `args` list.
5. Send PR with the changes to annarev.
Currently running benchmarks:
https://benchmarks-dot-tensorflow-testing.appspot.com/
For any questions, please contact annarev@google.com.