Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/felixpatzelt/colorednoise

Python package to generate Gaussian (1/f)**beta noise (e.g. pink noise)
https://github.com/felixpatzelt/colorednoise

correlations noise-generator power-laws python python2 python3 time-series

Last synced: 7 days ago
JSON representation

Python package to generate Gaussian (1/f)**beta noise (e.g. pink noise)

Awesome Lists containing this project

README

        

colorednoise.py
===============

Generate Gaussian distributed noise with a power law spectrum with arbitrary
exponents.

An exponent of two corresponds to brownian noise. Smaller exponents
yield long-range correlations, i.e. pink noise for an exponent of 1 (also
called 1/f noise or flicker noise).

Based on the algorithm in:

Timmer, J. and Koenig, M.:
On generating power law noise.
Astron. Astrophys. 300, 707-710 (1995)

Further reading:
`Colors of noise on Wikipedia /en.wikipedia.org/wiki/Colors_of_noise>`_

Installation
------------

pip install colorednoise


Dependencies
------------

- Python >= 3.6.15
- NumPy >= 1.17.0

Older Python 3 versions were not tested, but are likely to work.
For Python 2 please use colorednoise version 1.x.

Examples
--------

.. code:: python

import colorednoise as cn
beta = 1 # the exponent
samples = 2**18 # number of samples to generate
y = cn.powerlaw_psd_gaussian(beta, samples)

# optionally plot the Power Spectral Density with Matplotlib
#from matplotlib import mlab
#from matplotlib import pylab as plt
#s, f = mlab.psd(y, NFFT=2**13)
#plt.loglog(f,s)
#plt.grid(True)
#plt.show()


.. code:: python

# generate several time series of independent indentically distributed variables
# repeat the simulation of each variable multiple times
import colorednoise as cn
n_repeats = 10 # repeat simulatons
n_variables = 5 # independent variables in each simulation
timesteps = 1000 # number of timesteps for each variable
y = cn.powerlaw_psd_gaussian(1, (n_repeats, n_variables, timesteps))

# the expected variance of for each variable is 1, but each realisation is different
print(y.std(axis=-1))

.. code:: python

# generate a broken power law spectrum: white below a frequency of
import colorednoise as cn
y = cn.powerlaw_psd_gaussian(1, 10**5, fmin=.05)
s, f = mlab.psd(y, NFFT=2**9)
#plt.loglog(f,s)
#plt.grid(True)
#plt.show()