https://github.com/felixpatzelt/priceprop
Calibrate and simulate linear propagator models for the price impact of an extrinsic order flow.
https://github.com/felixpatzelt/priceprop
high-frequency-trading kernel-model linear-models modeling pandas propagators python scientific scientific-publications time-series time-series-econometrics
Last synced: 5 months ago
JSON representation
Calibrate and simulate linear propagator models for the price impact of an extrinsic order flow.
- Host: GitHub
- URL: https://github.com/felixpatzelt/priceprop
- Owner: felixpatzelt
- License: mit
- Created: 2017-09-29T00:15:49.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-01-16T01:33:45.000Z (over 7 years ago)
- Last Synced: 2024-12-30T17:35:52.977Z (5 months ago)
- Topics: high-frequency-trading, kernel-model, linear-models, modeling, pandas, propagators, python, scientific, scientific-publications, time-series, time-series-econometrics
- Language: Python
- Size: 1.11 MB
- Stars: 23
- Watchers: 3
- Forks: 9
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOG.rst
- License: LICENSE.txt
Awesome Lists containing this project
README
PriceProp
=========Simulate and calibrate linear propagator models for price responses to an
external order flow. The models and methods are explained and applied to
real high-frequency trading data in:
Patzelt, F. and Bouchaud, J-P. (2017):
Nonlinear price impact from linear models.
Journal of Statistical Mechanics: Theory and Experiment, 12, 123404.
Preprint at `arXiv:1708.02411 /arxiv.org/abs/1708.02411>`_.
===================== ======================================================
Function Synopsis
===================== ======================================================
G_pow Return power law Propagator kernel
beta_from_gamma Return exponent beta for a power law propagator kernel
that decorrelates an input with a pure power law
autocorrelation with exponent gamma
calibrate_hdim2 Calibrate two-kernel History Dependent Impact Model
calibrate_tim1 Calibrate original Transient Impact Model
calibrate_tim2 Calibrate two-kernel Transient Impact Model
hdim2 Simulate two-kernel History Dependent Impact Model
integrate Return lag 1 sum, i.e. convert a differential kernel
to a "bare response".
k_pow Return differential form of power law propagator kernel
propagate Apply propagator kernel to a time series (FFT conv.)
response Calculate e.g. a price response
response_grouped_df Calculate response for pandas groups and average
smooth_tail_rbf Smooth the tail of a long kernel using logarithmically
spaced Radial Basis Functions
tim1 Simulate original Transient Impact Model
tim2 Simulate two-kernel Transient Impact Model
===================== ======================================================The submodule ``batch`` automates model calibration and simulation. Please
find further explanations in the docstrings and in the examples directory.The required methods to efficiently estimate two- and three-point
correlation matrices were released in the separate package
`scorr /github.com/felixpatzelt/scorr>`_.Installation
------------pip install priceprop
Dependencies (automatically installed)
--------------------------------------- Python 2.7
- NumPy
- SciPy
- Pandas
- scorr
Optional Dependencies required only for the examples (pip installable)
----------------------------------------------------------------------- Jupyter
- Matplotlib
- colorednoise