Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ferd36/quaternions

A blazingly fast C++ library to work with quaternions :zap:
https://github.com/ferd36/quaternions

Last synced: 2 months ago
JSON representation

A blazingly fast C++ library to work with quaternions :zap:

Awesome Lists containing this project

README

        

# Quaternions [![Build status](https://travis-ci.org/FrankAstier/quaternions.svg?branch=master)](https://travis-ci.org/FrankAstier/quaternions) [![Coverage Status](https://coveralls.io/repos/FrankAstier/quaternions/badge.svg?branch=master&service=github&bust=1)](https://coveralls.io/github/FrankAstier/quaternions?branch=master)

A C++11 library to work with quaternions, as a single header file.

## Introduction
- In mathematics, the quaternions are a number system that extends the complex numbers.
They were first described by Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics
in three-dimensional space. A feature of quaternions is that multiplication of two quaternions is noncommutative.
Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space or equivalently
as the quotient of two vectors. Quaternions find uses in both theoretical and applied mathematics, in particular
for calculations involving three-dimensional rotations such as in three-dimensional computer graphics, computer
vision and crystallographic texture analysis. In practical applications, they can be used alongside other methods,
such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.

## Design objectives
- This library was designed to be simple, fast and convenient.
- For simplicity, there is a single(parametric) class, quaternion::Quaternion, that lives in a single header file.
- Computing the power of a quaternion in particular has been optimized to be significantly faster than boost.
- The methods provided have been designed to make it as natural as possible to use quaternion::Quaternion.

## Usage
- include \
- using namespace quaternion;
- To build the unit tests: cmake . ; make OR make -f Makefile.mk
- To make the doc: doxygen Doxyfile.
- The file unit_tests.cpp shows usage examples for all the function in the quaternion namespace.
- The file unit_tests.cpp contains various benchmarks.

## Notes
- Boost provides quaternions at: http://www.boost.org/doc/libs/1_59_0/libs/math/doc/html/quaternions.html
This implementation is as fast as or faster than Boost. In particular pow is much faster than Boost. The speedups
in this implementation were obtained by factorizing the a few low powers, and re-using those factorizations for
higher powers.
- I have tried to use intrinsics(SSE), but didn't find it to be faster than "naive" code.
- Expression templates: unless the expression templates do some serious work, gcc can optimize the code to get very
good performance, essentially equal to expression templates. So expression templates seem to be an older technique
that's no longer required by modern compilers(although clang seems to lag compared to gcc in terms of optimization).
- The std::complex class is reputed to be slow, mostly because it does a lot of work to comply with IEEE-754/IEC-559
apparently. Maybe the worst of this is that this compliance is not optional, and some developers have complained
that absolutely correct handling of the sign of infinities should not be forced on them.

## IEEE-754/IEC-559 compliance
- If the compiler supports IEC-559, which can be verified by calling std::numeric_limits::is_iec559,
then quaternion::Quaternion will leverage this.
- However the Quaternion algorithms do not currently take extra steps to comply with IEC-559's prescribed way of handling
NaNs, underflows, overflows...

## Tested with:
- clang
- gcc 4.8

## Requirements
- Boost is required for the unit tests, but not for the Quaternion class itself.

## Others/References
- https://en.wikipedia.org/wiki/Quaternion
- http://www.boost.org/doc/libs/1_59_0/libs/math/doc/html/quaternions.html
- *vectorclass* from Agner Fog, can be found at: http://www.agner.org/optimize/, and provides quaternion classes.
- http://www.geometrictools.com/index.html

## Quaternion synopsis

### Quaternion\ members
#### Constructors
Quaternion(T a=0, T b=0, T c=0, T d=0)

template
Quaternion(T1 a=0, T1 b=0, T1 c=0, T1 d=0)

template
Quaternion(const std::complex &x, const std::complex &y=std::complex(0, 0))

template
Quaternion(T1 *it)

template
Quaternion(It it)

template
Quaternion(const Quaternion &y)

template
Quaternion & operator=(const Quaternion &other)

#### Accessors
T a() const
T b() const
T c() const
T d() const

std::complex c1() const
std::complex c2() const

T to_real() const
std::complex to_complex() const
std::array to_array() const

T real() const
Quaternion unreal() const

T norm_squared() const
T abs() const
T unreal_norm_squared() const

#### Tests
template
bool is_unit(T1 eps=0) const

template
bool is_real(T1 eps=0) const

template
bool is_complex(T1 eps=0) const

template
bool is_unreal(T1 eps=0) const

#### Arithmetic
Quaternion operator+() const
Quaternion operator-() const
Quaternion operator+=(T y)
Quaternion operator-=(T y)
Quaternion operator*=(T k)
Quaternion operator/=(T k)

template
Quaternion operator+=(const std::complex &y)

template
Quaternion operator-=(const std::complex &y)

template
Quaternion operator*=(const std::complex &y)

template
Quaternion operator/=(const std::complex &y)

template
Quaternion operator+=(const Quaternion &y)

template
Quaternion operator-=(const Quaternion &y)

template
Quaternion operator*=(const Quaternion &y)

template
Quaternion operator/=(const Quaternion &y)

### Typedef
typedef Quaternion Qf
typedef Quaternion Qd
typedef Quaternion Qld

template
using polar_representation = std::array

template
using matrix_representation = std::array, 2>, 2>

template
using rotation_matrix = std::array, 3>

### Enumerations
enum DisplayStyle { q_nice, q_compact }

### Predefined constants
const Qf Qf_1(1)
const Qf Qf_i(0, 1)
const Qf Qf_j(0, 0, 1)
const Qf Qf_k(0, 0, 0, 1)

const Qd Qd_1(1)
const Qd Qd_i(0, 1)
const Qd Qd_j(0, 0, 1)
const Qd Qd_k(0, 0, 0, 1)

const Qld Qld_1(1)
const Qld Qld_i(0, 1)
const Qld Qld_j(0, 0, 1)
const Qld Qld_k(0, 0, 0, 1)

### Functions
#### Constructors
template
Quaternion spherical(T rho, T theta, T phi1, T phi2)

template
Quaternion semipolar(T rho, T alpha, T theta1, T theta2)

template
Quaternion multipolar(T rho1, T theta1, T rho2, T theta2)

template
Quaternion cylindrospherical(T t, T radius, T longitude, T latitude)

template
Quaternion cylindrical(T r, T angle, T h1, T h2)

template
polar_representation to_polar_representation(const Quaternion &x)

template
matrix_representation to_matrix_representation(const Quaternion &x)

template
rotation_matrix to_rotation_matrix(const Quaternion &x)

template
Quaternion from_rotation_matrix(const rotation_matrix &rm)

#### Various
template
Quaternion conj(const Quaternion &x)

template
T norm_squared(const Quaternion &x)

template
T abs(const Quaternion &x)

template
T unreal_norm_squared(const Quaternion &x)

template
T norm_l0(const Quaternion &x)

template
T norm_l1(const Quaternion &x)

template
T norm_lk(const Quaternion &x, T1 k)

template
T norm_sup(const Quaternion &x)

template
Quaternion normalize(const Quaternion &x)

#### Tests
template
bool is_unit(const Quaternion &x, T1 eps=0)

template
bool is_real(const Quaternion &x, T1 eps=0)

template
bool is_complex(const Quaternion &x, T1 eps=0)

template
bool is_unreal(const Quaternion &x, T1 eps=0)

#### Equality
template
bool operator==(const Quaternion &x, T2 y)

template
bool operator==(T2 y, const Quaternion &x)

template
bool operator!=(const Quaternion &x, T2 y)

template
bool operator!=(T2 y, const Quaternion &x)

template
bool nearly_equal(const Quaternion &x, T2 y, T3 eps)

template
bool nearly_equal(T2 y, const Quaternion &x, T3 eps)

template
bool operator==(const Quaternion &x, const std::complex &y)

template
bool operator!=(const Quaternion &x, const std::complex &y)

template
bool operator==(const std::complex &y, const Quaternion &x)

template
bool operator!=(const std::complex &y, const Quaternion &x)

template
bool nearly_equal(const Quaternion &x, const std::complex &y, T3 eps)

template
bool nearly_equal(const std::complex &y, const Quaternion &x, T3 eps)

template
bool operator==(const Quaternion &x, const Quaternion &y)

template
bool operator!=(const Quaternion &x, const Quaternion &y)

template
bool nearly_equal(const Quaternion &x, const Quaternion &y, T3 eps)

#### Arithmetic
template
Quaternion operator+(const Quaternion &x, T1 y)

template
Quaternion operator+(T1 y, const Quaternion &x)

template
Quaternion operator+(const Quaternion &x, std::complex &y)

template
Quaternion operator+(std::complex &y, const Quaternion &x)

template
Quaternion operator+(const Quaternion &x, const Quaternion &y)

template
Quaternion operator-(const Quaternion &x, T1 y)

template
Quaternion operator-(T1 y, const Quaternion &x)

template
Quaternion operator-(const Quaternion &x, std::complex &y)

template
Quaternion operator-(std::complex &y, const Quaternion &x)

template
Quaternion operator-(const Quaternion &x, const Quaternion &y)

template
Quaternion operator*(const Quaternion &x, T1 y)

template
Quaternion operator*(T1 y, const Quaternion &x)

template
Quaternion operator*(const Quaternion &x, std::complex &y)

template
Quaternion operator*(std::complex &y, const Quaternion &x)

template
Quaternion operator*(const Quaternion &x, const Quaternion &y)

template
Quaternion inverse(const Quaternion &x)

template
Quaternion operator/(const Quaternion &x, T1 y)

template
Quaternion operator/(T1 y, const Quaternion &x)

template
Quaternion operator/(const Quaternion &x, std::complex &y)

template
Quaternion operator/(std::complex &y, const Quaternion &x)

template
Quaternion operator/(const Quaternion &x, const Quaternion &y)

#### Dot, cross product, commutator
template
T dot(const Quaternion &x, const Quaternion &y)

template
Quaternion cross(const Quaternion &x, const Quaternion &y)

template
Quaternion commutator(const Quaternion &x, const Quaternion &y)

#### Transcendentals
template
Quaternion exp(const Quaternion &x)

template
Quaternion log(const Quaternion &x)

template
Quaternion pow2(const Quaternion &x)

template
Quaternion pow3(const Quaternion &x)

template
Quaternion pow4(const Quaternion &x)

template
Quaternion pow(const Quaternion &x, int expt)

template
Quaternion pow(const Quaternion &x, T a)

template
Quaternion pow(const Quaternion &x, const Quaternion &a)

template
Quaternion cos(const Quaternion &x)

template
Quaternion sin(const Quaternion &x)

template
Quaternion tan(const Quaternion &x)

template