https://github.com/fernandezfran/macchiato
:atom_symbol::robot: Data-driven nearest neighbor models for predicting experimental results on silicon lithium-ion battery anodes
https://github.com/fernandezfran/macchiato
clustering data-driven inference model nearest-neighbors
Last synced: 15 days ago
JSON representation
:atom_symbol::robot: Data-driven nearest neighbor models for predicting experimental results on silicon lithium-ion battery anodes
- Host: GitHub
- URL: https://github.com/fernandezfran/macchiato
- Owner: fernandezfran
- License: mit
- Created: 2023-02-13T19:19:28.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-12-15T19:11:24.000Z (about 2 years ago)
- Last Synced: 2025-09-05T19:24:43.635Z (5 months ago)
- Topics: clustering, data-driven, inference, model, nearest-neighbors
- Language: Python
- Homepage: https://macchiato.rtfd.io/
- Size: 714 KB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.bib
Awesome Lists containing this project
README
# macchiato
[](https://github.com/fernandezfran/macchiato/actions/workflows/CI.yml)
[](https://macchiato.readthedocs.io/en/latest/?badge=latest)
[](https://pypi.org/project/macchiato/)
[](https://www.python.org/)
[](https://github.com/fernandezfran/macchiato/blob/main/LICENSE)
[](https://doi.org/10.1103/PhysRevB.108.144201)
Data-driven nearest neighbor models for predicting experimental results on
silicon lithium-ion battery anodes.
## Requirements
You need Python 3.8+ to run macchiato.
## Installation
You can install the most recent stable release of macchiato with
[pip](https://pip.pypa.io/en/latest/)
```
python -m pip install -U pip
python -m pip install -U macchiato
```
## Usage
The Jupyter Notebook pipeline in the
[paper folder](https://github.com/fernandezfran/macchiato/tree/main/paper)
is presented to reproduce the results of the published article.
## Citation
> Fernandez, F., Otero, M., Oviedo, M. B., Barraco, D. E., Paz, S. A., & Leiva,
> E. P. M. (2023). NMR, x-ray, and Mössbauer results for amorphous Li-Si alloys
> using density functional tight-binding method. Physical Review B, 108(14), 144201.
BibTeX entry:
```bibtex
@article{fernandez2023nmr,
title={NMR, x-ray, and M{\"o}ssbauer results for amorphous Li-Si alloys using density functional tight-binding method},
author={Fernandez, F and Otero, M and Oviedo, MB and Barraco, DE and Paz, SA and Leiva, EPM},
journal={Physical Review B},
volume={108},
number={14},
pages={144201},
year={2023},
publisher={APS}
}
```
## Contact
You can contact me if you have any questions at