An open API service indexing awesome lists of open source software.

https://github.com/fernandezfran/macchiato

:atom_symbol::robot: Data-driven nearest neighbor models for predicting experimental results on silicon lithium-ion battery anodes
https://github.com/fernandezfran/macchiato

clustering data-driven inference model nearest-neighbors

Last synced: 15 days ago
JSON representation

:atom_symbol::robot: Data-driven nearest neighbor models for predicting experimental results on silicon lithium-ion battery anodes

Awesome Lists containing this project

README

          

# macchiato

[![macchiatos CI](https://github.com/fernandezfran/macchiato/actions/workflows/CI.yml/badge.svg)](https://github.com/fernandezfran/macchiato/actions/workflows/CI.yml)
[![documentation status](https://readthedocs.org/projects/macchiato/badge/?version=latest)](https://macchiato.readthedocs.io/en/latest/?badge=latest)
[![pypi version](https://img.shields.io/pypi/v/macchiato)](https://pypi.org/project/macchiato/)
[![python version](https://img.shields.io/badge/python-3.8%2B-4584b6)](https://www.python.org/)
[![mit license](https://img.shields.io/badge/License-MIT-ffde57)](https://github.com/fernandezfran/macchiato/blob/main/LICENSE)
[![PRB](https://img.shields.io/badge/PhysRevB-108.144201-b31033)](https://doi.org/10.1103/PhysRevB.108.144201)

Data-driven nearest neighbor models for predicting experimental results on
silicon lithium-ion battery anodes.

## Requirements

You need Python 3.8+ to run macchiato.

## Installation

You can install the most recent stable release of macchiato with
[pip](https://pip.pypa.io/en/latest/)

```
python -m pip install -U pip
python -m pip install -U macchiato
```

## Usage

The Jupyter Notebook pipeline in the
[paper folder](https://github.com/fernandezfran/macchiato/tree/main/paper)
is presented to reproduce the results of the published article.

## Citation

> Fernandez, F., Otero, M., Oviedo, M. B., Barraco, D. E., Paz, S. A., & Leiva,
> E. P. M. (2023). NMR, x-ray, and Mössbauer results for amorphous Li-Si alloys
> using density functional tight-binding method. Physical Review B, 108(14), 144201.

BibTeX entry:

```bibtex
@article{fernandez2023nmr,
title={NMR, x-ray, and M{\"o}ssbauer results for amorphous Li-Si alloys using density functional tight-binding method},
author={Fernandez, F and Otero, M and Oviedo, MB and Barraco, DE and Paz, SA and Leiva, EPM},
journal={Physical Review B},
volume={108},
number={14},
pages={144201},
year={2023},
publisher={APS}
}
```

## Contact

You can contact me if you have any questions at