Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fibo/cayley-dickson
implements Cayley-Dickson construction to produce a sequence of algebras over a field
https://github.com/fibo/cayley-dickson
algebra cayley-dickson complex octonion quaternion
Last synced: 3 months ago
JSON representation
implements Cayley-Dickson construction to produce a sequence of algebras over a field
- Host: GitHub
- URL: https://github.com/fibo/cayley-dickson
- Owner: fibo
- License: mit
- Created: 2015-09-14T06:59:53.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2020-01-24T01:09:30.000Z (almost 5 years ago)
- Last Synced: 2024-10-13T17:32:46.513Z (3 months ago)
- Topics: algebra, cayley-dickson, complex, octonion, quaternion
- Language: JavaScript
- Homepage: http://g14n.info/cayley-dickson
- Size: 55.7 KB
- Stars: 6
- Watchers: 4
- Forks: 0
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# cayley-dickson
> implements [Cayley-Dickson construction][Cayley-Dickson] to produce a sequence of algebras over a field
[Installation](#installation) |
[Usage](#usage) :
[Real](#real) >
[Complex](#complex) >
[Quaternion](#quaternion) >
[Octonion](#octonion) >
[Sedenion](#sedenion) |
[License](#license)[![NPM version](https://badge.fury.io/js/cayley-dickson.svg)](http://badge.fury.io/js/cayley-dickson)
[![Build Status](https://travis-ci.org/fibo/cayley-dickson.svg?branch=master)](https://travis-ci.org/fibo/cayley-dickson?branch=master)
[![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com)## Installation
With [npm](https://www.npmjs.com) do
```bash
npm install cayley-dickson
```## Usage
Every code snippet below it is intended to be contained in a [single file](https://github.com/fibo/cayley-dickson/blob/master/test.js).
Define real operators, see also [algebra-ring]. Note that you could use any operators definition, for example using a *big numbers* lib.
```javascript
const real = {
zero: 0,
one: 1,
equality: (a, b) => (a === b),
contains: (a) => (typeof a === 'number' && isFinite(a)),
addition: (a, b) => (a + b),
negation: (a) => -a,
multiplication: (a, b) => (a * b),
inversion: (a) => (1 / a)
}
```Import cayley-dickson.
```javascript
const iterateCayleyDickson = require('cayley-dickson')
```Now you can use [Cayley-Dickson] constructions to build algebras.
Every iteration doubles the dimension.
Let's take a trip through Cayley-Dickson algebras.### Real
> start from here
Well, iteration 0 gives the common Real numbers. The result is just the return value of the [algebra-ring] function, nothing really exciting.
```javascript
// Real numbers.
const R = iterateCayleyDickson(real, 0)R.equality(2, 2) // true
R.disequality(1, 2) // true
R.contains(Math.PI) // true
R.notContains(Infinity) // true
R.addition(1, 2) // 3
R.subtraction(1, 2) // -1
R.negation(2) // -2
R.multiplication(-3, 2) // -6
R.division(10, 2) // 5
R.inversion(2) // 0.5
```### Complex
> a beautiful plane
First iteration gives Complex numbers, they are a field like the Real numbers.
```javascript
// Complex numbers.
const C = iterateCayleyDickson(real, 1)C.equality([1, 2], [1, 2]) // true
C.disequality([1, 2], [0, 1]) // true
C.contains([Math.PI, 2]) // true
C.notContains(1) // true
C.addition([1, 2], [-1, 2], [2, 2]) // [2, 6]
C.subtraction([1, 1], [2, 3]) // [-1, -2]
C.negation([1, 2]) // [-1, -2]
C.multiplication([1, 2], [1, -2]) // [5, 0]
C.division([5, 0], [1, 2]) // [1, -2]
C.inversion([0, 2]) // [0, -0.5]
C.conjugation([1, 2]) // [1, -2]
```### Quaternion
> here you loose commutativity
Second iteration gives [Quaternion numbers](https://en.wikipedia.org/wiki/Quaternion),
usually denoted as ℍ in honour of sir Hamilton.
They are used in computer graphics cause rotations are far easier to manipulate in this land.Let's check the famous formula for Quaternion multiplication `ijk = i² = j² = k² = -1`
![ijk-1]
```javascript
// Quaternion numbers.
const H = iterateCayleyDickson(real, 2)const minusOne = new H([-1, 0, 0, 0])
j
const i = new H([0, 1, 0, 0])
const j = new H([0, 0, 1, 0])
const k = new H([0, 0, 0, 1])H.equality(H.multiplication(i, i), minusOne) // true
H.equality(H.multiplication(j, j), minusOne) // true
H.equality(H.multiplication(k, k), minusOne) // true// ijk - 1 = 0
H.subtraction(H.multiplication(i, j, k), minusOne) // [0, 0, 0, 0]
```### Octonion
> here you loose associativity
Third iteration gives [Octonion numbers](https://en.wikipedia.org/wiki/Octonion).
A byte could be seen as an octonion of bits, which should define a new kind of bit operator.```javascript
// Octonion numbers.
const O = iterateCayleyDickson(real, 3)const minusOne = [-1, 0, 0, 0, 0, 0, 0, 0]
const i1 = [0, 1, 0, 0, 0, 0, 0, 0]
O.equality(O.multiplication(i1, i1), minusOne) // true
O.conjugation([1, 2, 3, 4, 5, 6, 7, 8]) // [1, -2, -3, -4, -5, -6, -7, -8]
```### Sedenion
> hic sunt leones
Fourth iteration gives [Sedenion numbers](https://en.wikipedia.org/wiki/Sedenion),
that are out of my scope sincerely. They are not a division ring, there are elements that divide zero 😱.```javascript
// Sedenion numbers.
const S = iterateCayleyDickson(real, 4)
```## License
[MIT](http://g14n.info/mit-license)
[Cayley-Dickson]: https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction "Cayley-Dickson construction"
[algebra-ring]: http://npm.im/algebra-ring "algebra-ring"
[ijk-1]: http://i.stack.imgur.com/eYs5r.jpg "ijk-1"