Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fidler-lab/polyrnn-pp
Inference Code for Polygon-RNN++ (CVPR 2018)
https://github.com/fidler-lab/polyrnn-pp
annotation cvpr2018 deep-learning instance-annotation instance-segmentation labelling polygon-rnn polyrnn tensorflow
Last synced: about 2 months ago
JSON representation
Inference Code for Polygon-RNN++ (CVPR 2018)
- Host: GitHub
- URL: https://github.com/fidler-lab/polyrnn-pp
- Owner: fidler-lab
- License: gpl-3.0
- Created: 2018-03-16T23:04:27.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-08-29T16:30:36.000Z (over 6 years ago)
- Last Synced: 2024-08-08T23:18:50.308Z (6 months ago)
- Topics: annotation, cvpr2018, deep-learning, instance-annotation, instance-segmentation, labelling, polygon-rnn, polyrnn, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 1.47 MB
- Stars: 732
- Watchers: 47
- Forks: 161
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PolygonRNN++
This is the official inference code for Polygon-RNN++ (CVPR-2018). For technical details, please refer to:
**An official pytorch reimplementation with training/tool code is available [here](https://github.com/fidler-lab/polyrnn-pp-pytorch)**
**Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++**
[David Acuna](http://www.cs.toronto.edu/~davidj/)\*, [Huan Ling](http:///www.cs.toronto.edu/~linghuan/)\*, [Amlan Kar](http://www.cs.toronto.edu/~amlan/)\*, [Sanja Fidler](http://www.cs.toronto.edu/~fidler/) (\* denotes equal contribution)
CVPR 2018
**[[Paper](https://arxiv.org/abs/1803.09693)] [[Video](https://www.youtube.com/watch?v=evGqMnL4P3E)] [[Project Page](http://www.cs.toronto.edu/polyrnn/)] [[Demo](http://www.cs.toronto.edu/~amlan/demo/)] [[Training/Tool Code](https://github.com/fidler-lab/polyrnn-pp-pytorch)]**
![Model](readme/model.png)### Usage
1. Clone the repository
```
git clone https://github.com/davidjesusacu/polyrnn && cd polyrnn
```
2. Install dependencies
(Note: Using a GPU (and tensorflow-gpu) is recommended. The model will run on a CPU, albeit slowly.)
```
virtualenv env
source env/bin/activate
pip install -r requirements.txt
```
3. Download the pre-trained models and graphs (448 MB)
(These models were trained on the Cityscapes Dataset)
```
./models/download_and_unpack.sh
```
4. Run demo\_inference.sh
```
./src/demo_inference.sh
```
This should produce results in the output/ folder that look like
![ex2](readme/frankfurt_000000_000294_42.png)
![ex1](readme/medical_00_5_20.png)### Walkthrough
Checkout the ipython [notebook](src/demo_polyrnn.ipynb) that provides a simple walkthrough demonstrating how
to run our model on sample input image cropsIf you use this code, please cite:
@inproceedings{AcunaCVPR18,
title={Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++},
author={David Acuna and Huan Ling and Amlan Kar and Sanja Fidler},
booktitle={CVPR},
year={2018}
}@inproceedings{CastrejonCVPR17,
title = {Annotating Object Instances with a Polygon-RNN},
author = {Lluis Castrejon and Kaustav Kundu and Raquel Urtasun and Sanja Fidler},
booktitle = {CVPR},
year = {2017}
}