Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/filipinascimento/bl-network-nullmodel
Generates an esemble of networks according to null models that try to reproduce the data. Erdos reyni (random), Barabási-Albert and Configuration model are implemented
https://github.com/filipinascimento/bl-network-nullmodel
network
Last synced: about 2 months ago
JSON representation
Generates an esemble of networks according to null models that try to reproduce the data. Erdos reyni (random), Barabási-Albert and Configuration model are implemented
- Host: GitHub
- URL: https://github.com/filipinascimento/bl-network-nullmodel
- Owner: filipinascimento
- License: mit
- Created: 2020-02-03T15:46:34.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-10-15T18:11:53.000Z (over 4 years ago)
- Last Synced: 2024-11-08T06:26:52.903Z (3 months ago)
- Topics: network
- Language: Python
- Homepage:
- Size: 598 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![Abcdspec-compliant](https://img.shields.io/badge/ABCD_Spec-v1.1-green.svg)](https://github.com/brain-life/abcd-spec)
[![Run on Brainlife.io](https://img.shields.io/badge/Brainlife-bl.app.1-blue.svg)](https://doi.org/10.25663/brainlife.app.277)# Network Null-Models
Generates a esemble of networks according to null models that try to reproduce the data. Erdos reyni (random), Barabási-Albert and Configuration model are implemented.### Authors
- [Filipi N. Silva](https://filipinascimento.github.io)### Contributors
- [Franco Pestilli](https://liberalarts.utexas.edu/psychology/faculty/fp4834)### Funding Acknowledgement
brainlife.io is publicly funded and for the sustainability of the project it is helpful to Acknowledge the use of the platform. We kindly ask that you acknowledge the funding below in your publications and code reusing this code.[![NSF-BCS-1734853](https://img.shields.io/badge/NSF_BCS-1734853-blue.svg)](https://nsf.gov/awardsearch/showAward?AWD_ID=1734853)
[![NSF-BCS-1636893](https://img.shields.io/badge/NSF_BCS-1636893-blue.svg)](https://nsf.gov/awardsearch/showAward?AWD_ID=1636893)
[![NSF-ACI-1916518](https://img.shields.io/badge/NSF_ACI-1916518-blue.svg)](https://nsf.gov/awardsearch/showAward?AWD_ID=1916518)
[![NSF-IIS-1912270](https://img.shields.io/badge/NSF_IIS-1912270-blue.svg)](https://nsf.gov/awardsearch/showAward?AWD_ID=1912270)
[![NIH-NIBIB-R01EB029272](https://img.shields.io/badge/NIH_NIBIB-R01EB029272-green.svg)](https://grantome.com/grant/NIH/R01-EB029272-01)### Citations
1. Avesani, P., McPherson, B., Hayashi, S. et al. The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci Data 6, 69 (2019). [https://doi.org/10.1038/s41597-019-0073-y](https://doi.org/10.1038/s41597-019-0073-y)2. Barabási, Albert-László. Network science. Cambridge university press, 2016.
Harvard [http://barabasi.com/networksciencebook/](http://barabasi.com/networksciencebook/)## Running the App
### On Brainlife.io
You can submit this App online at [https://doi.org/10.25663/brainlife.app.277](https://doi.org/10.25663/brainlife.app.277) via the "Execute" tab.
### Running Locally (on your machine)
Singularity is required to run the package locally.1. git clone this repo.
```bash
git clone
cd
```2. Inside the cloned directory, edit `config-sample.json` with your data or use the provided data.
3. Rename `config-sample.json` to `config.json` .
```bash
mv config-sample.json config.json
```4. Launch the App by executing `main`
```bash
./main
```### Sample Datasets
A sample dataset is provided in folder `data` and `config-sample.json`
## Output
The output is a `network` datatype containing just the generated realizations of the null model.
### Dependencies
This App only requires [singularity](https://www.sylabs.io/singularity/) to run. If you don't have singularity, you will need to install the python packages defined in `environment.yml`, then you can run the code directly from python using:
```bash
./main.py config.json
```