Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/finsberg/gotranx
Next generation ODE translator
https://github.com/finsberg/gotranx
code-generation gotran ode parser parsing
Last synced: 3 days ago
JSON representation
Next generation ODE translator
- Host: GitHub
- URL: https://github.com/finsberg/gotranx
- Owner: finsberg
- License: mit
- Created: 2022-07-09T13:22:15.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-11-11T22:10:42.000Z (3 days ago)
- Last Synced: 2024-11-11T23:20:05.905Z (3 days ago)
- Topics: code-generation, gotran, ode, parser, parsing
- Language: Python
- Homepage: https://finsberg.github.io/gotranx
- Size: 2.39 MB
- Stars: 8
- Watchers: 1
- Forks: 1
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Roadmap: docs/roadmap.md
Awesome Lists containing this project
README
![_](https://raw.githubusercontent.com/finsberg/gotranx/main/docs/_static/logo.png)
[![pre-commit](https://github.com/finsberg/gotranx/actions/workflows/pre-commit.yml/badge.svg)](https://github.com/finsberg/gotranx/actions/workflows/pre-commit.yml)
[![CI](https://github.com/finsberg/gotranx/actions/workflows/main.yml/badge.svg)](https://github.com/finsberg/gotranx/actions/workflows/main.yml)
[![Publish documentation](https://github.com/finsberg/gotranx/actions/workflows/deploy_docs.yml/badge.svg)](https://finsberg.github.io/gotranx)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![CodSpeed Badge](https://img.shields.io/endpoint?url=https://codspeed.io/badge.json)](https://codspeed.io/finsberg/gotranx)
[![status](https://joss.theoj.org/papers/40dc8d8287c6188eaab8149ed3bfe60b/status.svg)](https://joss.theoj.org/papers/40dc8d8287c6188eaab8149ed3bfe60b)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.13940990.svg)](https://doi.org/10.5281/zenodo.13940990)# gotranx
`gotranx` is the next generation General ODE translator. The general idea is that you write your ODE in a high level markup language and use `gotranx` to generate code for solving the ODE in different programming languages. `gotranx` uses [`sympy`](https://www.sympy.org/en/index.html) to create a symbolic representation of the ODE which is used to generate the jacobian and numerical schemes.
- Source code: https://github.com/finsberg/gotranx
- Documentation: https://finsberg.github.io/gotranx/## Install
Install with pip
```
python3 -m pip install gotranx
```
or for the development version
```
python3 -m pip install git+https://github.com/finsberg/gotranx
```## Quick start
Define your ODE in a `.ode` file, e.g `file.ode` with the content
```
states(x=1, y=0)
parameters(a=1.0)dx_dt = a * y
dy_dt = -x
```
which defines the ODE system$$
\begin{align}
\frac{dx}{dt} &= ay \\
\frac{dy}{dt} &= -x
\end{align}
$$with the initial conditions $x(0) = 1$ and $y(0) = 0$ and the parameter $a$ with a value of 1.0. Now generate code in python for solving this ODE with the explicit euler scheme using the command
```
gotranx ode2py file.ode --scheme explicit_euler -o file.py
```
which will create a file `file.py` containing functions for solving the ODE. Now you can solve the ode using the following code snippet```python
import file as model
import numpy as np
import matplotlib.pyplot as plts = model.init_state_values()
p = model.init_parameter_values()
dt = 1e-4 # 0.1 ms
T = 2 * np.pi
t = np.arange(0, T, dt)x_index = model.state_index("x")
x = [s[x_index]]
y_index = model.state_index("y")
y = [s[y_index]]for ti in t[1:]:
s = model.explicit_euler(s, ti, dt, p)
x.append(s[x_index])
y.append(s[y_index])plt.plot(t, x, label="x")
plt.plot(t, y, label="y")
plt.legend()
plt.show()
```
![_](docs/_static/quick_start.png)Alternatively, you can use a third-party ODE solver, e.g [`scipy.integrate.solve_ivp`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html) to solve the ODE by passing in the right-hand side function
```python
import file as model
from scipy.integrate import solve_ivp
import numpy as np
import matplotlib.pyplot as plts = model.init_state_values()
p = model.init_parameter_values()
dt = 1e-4 # 0.1 ms
T = 2 * np.pi
t = np.arange(0, T, dt)res = solve_ivp(
model.rhs,
(0, T),
s,
method="RK45",
t_eval=t,
args=(p,),
)plt.plot(res.t, res.y.T)
plt.legend()
plt.show()
```Note that this is a rather artificial example, so check out the demos in the [documentation](https://finsberg.github.io/gotranx/) for more elaborate examples.
## FAQ
**Why should I use `gotranx`?**
The main reasons to use `gotranx` are1. You want to solve your model using different programming languages (e.g python and C)
2. You want to create a custom numerical scheme that can utilize the symbolic representation of the ODE
3. You would like to share your model in a high level representation (i.e a markup language)**How does it differ from `scipy.integrate.solve_ivp`?**
`scipy.integrate.solve_ivp` is an ODE solver which takes as input a function defining the right-hand. `gotranx` takes a high level representation of the ODE and can generate code for the right hand side. In other words, you can use `scipy.integrate.solve_ivp` to solve the ODE and use `gotranx` to generate the right hand side.## Automated tests
### Unit tests
Automated tests can be found in the [`test`](https://github.com/finsberg/gotranx/tree/main/tests) folder. To the run the tests please install the test dependencies
```
python3 -m pip install "gotranx[test]"
```
or if you have cloned the repo locally you can do
```
python3 -m pip install ".[test]"
```
To run the tests you should execute the following command
```
python3 -m pytest
```
Also note that the tests are run on every push and pull request to `main` using [GitHub actions](https://github.com/finsberg/gotranx/actions).### Linting and formatting
We use [`pre-commit`](https://pre-commit.com) to run the a set of linters and formatters in order to ensure consistent code style. Developers should install the [pre-commit hooks](https://github.com/finsberg/gotranx/blob/main/.pre-commit-config.yaml) by first installing `pre-commit`
```
python3 -m pip install pre-commit
```
and then install the pre-commit hooks
```
pre-commit install
```
To run the hooks on all the files you can do
```
pre-commit run --all
```
For further instructions see the [contributing guide](https://finsberg.github.io/gotranx/CONTRIBUTING.html).Note also the we run all hooks as a part of our [continuous integration](https://github.com/finsberg/gotranx/actions/workflows/pre-commit.yml), and we are also using [pre-commit.ci](https://pre-commit.ci) to update branches automatically that can fix issues automatically.
### Performance monitoring
We have defined a set of benchmarks that run on every push to the `main` branch using [codspeed](https://codspeed.io). To monitor the performance over time you can check out the [performance report](https://codspeed.io/finsberg/gotranx).To run the benchmarks locally you can install the `pytest-codspeed` plugin
```
python3 -m pip install pytest-codspeed
```
and run
```
python3 -m pytest tests/ --codspeed
```
You can find more info at https://docs.codspeed.io/benchmarks/python## License
MIT## Contributing
Contributions are very welcomed, but please read the [contributing guide](https://finsberg.github.io/gotranx/CONTRIBUTING.html) first