Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/firaja/flowers-classification

Classification of flowers from Oxford Flowers 102 dataset
https://github.com/firaja/flowers-classification

advanced-machine-learning bicocca flower-classification image-classification keras machine-learning oxford-flower-dataset tensorflow

Last synced: about 2 months ago
JSON representation

Classification of flowers from Oxford Flowers 102 dataset

Awesome Lists containing this project

README

        

# Classification of flower images starting from a small dataset

![report/images/sal3.png](report/images/sal3.png)
## Installation
Python3 is required alogn with cudnna and CUDA Toolkit.

Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the required dependencies.

```bash
pip install -r requirements.txt
```

Download the dataset from https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

Create a folder called `data` and move the downloaded archive. Then execute

```bash
matlab -nodisplay -nosplash -nodesktop -r "run('split_dataset_paper.m');exit;"
```

in the same folder.

## Usage

### Training
```bash
trainer.py [-h] [--batch [BATCH]] [--arch [ARCHITECTURE]] [--opt [OPTIMIZER]] [--clr [CLR]] [--step [STEP]] [--dropout [DROPOUT]] [--config [CONFIG]] [--mp] [--da] [--epoch [EPOCH]]

```
```
optional arguments:
-h, --help show this help message and exit
--batch [BATCH] Batch size used during training
--arch [{efficientnetb4,frozenefficientnetb4,inceptionv3,resnet18}]
Architecture
--opt [{Adam,SGD}] Optimizer
--clr [{triangular,triangular2,exp}]
Cyclical learning rate
--step [STEP] Step size
--dropout [DROPOUT] Dropout rate (when used with FrozenEfficientNetB4 it's used for the freeze rate)
--config [CONFIG] Configuration file
--mp Enable mixed precision operations (16bit-32bit)
--da Enable Data Augmentation
--epoch [EPOCH] Set the number of epochs
```

The script will produce plots and checkpoints in `./output/plots` and `./output/checkpoints`

### Learning Rate Finder
```bash
python learningratefinder.py [-h] [--batch [BATCH]] [--arch [ARCHITECTURE]] [--opt [OPTIMIZER]] [--dropout [DROPOUT]] [--config [CONFIG]] [--da] [--freeze [FREEZE]] [--epoch [EPOCH]]
```
```
optional arguments:
-h, --help show this help message and exit
--batch [BATCH] Batch size used during training
--arch [{efficientnetb4,frozenefficientnetb4,inceptionv3,resnet18}]
Architecture
--opt [{Adam,SGD}] Optimizer
--dropout [DROPOUT] Dropout rate
--config [CONFIG] Configuration file
--da Enable Data Augmentation
--freeze [FREEZE] Frozen layers
--epoch [EPOCH] Set the number of epochs
```
## Visualization

To visualize Saliency Map and Grad-CAM run
```bash
python3 visualize.py
```

The image must be store with the following pattern `./images/{class}/{image}.jpg`

## Contributing

The repository is hosted in Github https://github.com/firaja/aml

## License

[MIT](https://choosealicense.com/licenses/mit/)