https://github.com/firefly-cpp/niaarmts
https://github.com/firefly-cpp/niaarmts
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/firefly-cpp/niaarmts
- Owner: firefly-cpp
- License: mit
- Created: 2025-01-09T13:25:55.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2025-04-14T21:14:40.000Z (2 months ago)
- Last Synced: 2025-04-14T22:25:39.301Z (2 months ago)
- Language: Python
- Size: 606 KB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
![]()
Nature-Inspired Algorithms for Time Series Numerical Association Rule Mining
β¨ Features β’
π¦ Installation β’
π Basic example β’
π Reference Papers β’
π License β’
π Cite usThis framework is designed for **numerical association rule mining in time series data** using **stochastic population-based nature-inspired algorithms**[^1]. It provides tools to extract association rules from time series datasets while incorporating key metrics such as **support**, **confidence**, **inclusion**, and **amplitude**. Although independent from the NiaARM framework, this software can be viewed as an extension, with additional support for time series numerical association rule mining.
## β¨ Features
The current version of the framework supports two types of time series numerical association rule mining:
- **Fixed Interval Time Series Numerical Association Rule Mining**
- **Segmented Interval Time Series Numerical Association Rule Mining**## π¦ Installation
To install `NiaARMTS` with pip, use:
```sh
pip install niaarmts
```## π Basic example
### Fixed Interval Time Series Numerical Association Rule Mining example
```python
from niapy.algorithms.basic import ParticleSwarmAlgorithm
from niapy.task import Task
from niaarmts import Dataset
from niaarmts.NiaARMTS import NiaARMTS# Load dataset
dataset = Dataset()
dataset.load_data_from_csv('intervals.csv', timestamp_col='timestamp')# Create an instance of NiaARMTS
niaarmts_problem = NiaARMTS(
dimension=dataset.calculate_problem_dimension(), # Adjust dimension dynamically
lower=0.0, # Lower bound of solution space
upper=1.0, # Upper bound of solution space
features=dataset.get_all_features_with_metadata(), # Pass feature metadata
transactions=dataset.get_all_transactions(), # Dataframe containing all transactions
interval='true', # Whether we're dealing with interval data
alpha=1.0, # Weight for support in fitness calculation
beta=1.0, # Weight for confidence in fitness calculation
gamma=1.0, # Weight for inclusion in fitness calculation # if 0.0 then inclusion metric is omitted
delta=1.0 # Weight for amplitude in fitness calculation # if 0.0 then amplitude metric is omitted
)# Define the optimization task
task = Task(problem=niaarmts_problem, max_iters=100) # Run for 100 iterations# Initialize the Particle Swarm Optimization algorithm
pso = ParticleSwarmAlgorithm(population_size=40, min_velocity=-1.0, max_velocity=1.0, c1=2.0, c2=2.0)# Run the algorithm
best_solution = pso.run(task)# Save discovered rules to CSV
niaarmts_problem.save_rules_to_csv("interval_rules.csv")# Print all rules to the terminal
print("\n=== All Identified Rules (Interval Data, Sorted by Fitness) ===")
for idx, rule in enumerate(niaarmts_problem.get_rule_archive(), 1):
print(f"\nRule #{idx}:")
print(f" Antecedent: {rule['antecedent']}")
print(f" Consequent: {rule['consequent']}")
print(f" Support: {rule['support']:.4f}")
print(f" Confidence: {rule['confidence']:.4f}")
print(f" Inclusion: {rule['inclusion']:.4f}")
print(f" Amplitude: {rule['amplitude']:.4f}")
print(f" Fitness: {rule['fitness']:.4f}")
print(f" Interval: {rule['start']} (start) to {rule['end']} (end)")
```### Segmented Interval Time Series Numerical Association Rule Mining example
```python
from niapy.algorithms.basic import ParticleSwarmAlgorithm
from niapy.task import Task
from niaarmts import Dataset
from niaarmts.NiaARMTS import NiaARMTS# Load dataset
dataset = Dataset()
dataset.load_data_from_csv('ts.csv', timestamp_col='timestamp')# Create an instance of NiaARMTS
niaarmts_problem = NiaARMTS(
dimension=dataset.calculate_problem_dimension(), # Adjust dimension dynamically
lower=0.0, # Lower bound of solution space
upper=1.0, # Upper bound of solution space
features=dataset.get_all_features_with_metadata(), # Pass feature metadata
transactions=dataset.get_all_transactions(), # Dataframe containing all transactions
interval='false', # Whether we're dealing with interval data
alpha=1.0, # Weight for support in fitness calculation
beta=1.0, # Weight for confidence in fitness calculation
gamma=1.0, # Weight for inclusion in fitness calculation # if 0.0 then inclusion metric is omitted
delta=1.0 # Weight for amplitude in fitness calculation # if 0.0 then amplitude metric is omitted
)# Define the optimization task
task = Task(problem=niaarmts_problem, max_iters=100) # Run for 100 iterations# Initialize the Particle Swarm Optimization algorithm
pso = ParticleSwarmAlgorithm(population_size=40, min_velocity=-1.0, max_velocity=1.0, c1=2.0, c2=2.0)# Run the algorithm
best_solution = pso.run(task)# Output the best solution and its fitness value
print(f"Best solution: {best_solution[0]}")
print(f"Fitness value: {best_solution[1]}")# Save all discovered rules to a CSV file
niaarmts_problem.save_rules_to_csv("discovered_rules.csv")# Print all rules to the terminal
print("\n=== All Identified Rules (Sorted by Fitness) ===")
for idx, rule in enumerate(niaarmts_problem.get_rule_archive(), 1):
print(f"\nRule #{idx}:")
print(f" Antecedent: {rule['antecedent']}")
print(f" Consequent: {rule['consequent']}")
print(f" Support: {rule['support']:.4f}")
print(f" Confidence: {rule['confidence']:.4f}")
print(f" Inclusion: {rule['inclusion']:.4f}")
print(f" Amplitude: {rule['amplitude']:.4f}")
print(f" Fitness: {rule['fitness']:.4f}")
print(f" Time window: {rule['start']} to {rule['end']}")
```## π Reference Papers
Ideas are based on the following research papers:
[1] Iztok Fister Jr., DuΕ‘an Fister, Iztok Fister, Vili Podgorelec, Sancho Salcedo-Sanz. [Time series numerical association rule mining variants in smart agriculture](https://iztok.link/static/publications/314.pdf). Journal of Ambient Intelligence and Humanized Computing (2023): 1-14.
[2] Iztok Fister Jr., Iztok Fister, Sancho Salcedo-Sanz. [Time Series Numerical Association Rule Mining for assisting Smart Agriculture](https://iztok.link/static/publications/298.pdf). In: International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2022.
[3] I. Fister Jr., A. Iglesias, A. GΓ‘lvez, J. Del Ser, E. Osaba, I Fister. [Differential evolution for association rule mining using categorical and numerical attributes](http://www.iztok-jr-fister.eu/static/publications/231.pdf) In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.
[4] I. Fister Jr., V. Podgorelec, I. Fister. [Improved Nature-Inspired Algorithms for Numeric Association Rule Mining](https://iztok-jr-fister.eu/static/publications/324.pdf). In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.
[5] I. Fister Jr., I. Fister [A brief overview of swarm intelligence-based algorithms for numerical association rule mining](https://arxiv.org/abs/2010.15524). arXiv preprint arXiv:2010.15524 (2020).
[6] Fister, I. et al. (2020). [Visualization of Numerical Association Rules by Hill Slopes](http://www.iztok-jr-fister.eu/static/publications/280.pdf).
In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning β IDEAL 2020.
IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_10[7] I. Fister, S. Deb, I. Fister, [Population-based metaheuristics for Association Rule Text Mining](http://www.iztok-jr-fister.eu/static/publications/260.pdf),
In: Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence,
New York, NY, USA, mar. 2020, pp. 19β23. doi: [10.1145/3396474.3396493](https://dl.acm.org/doi/10.1145/3396474.3396493).[8] I. Fister, I. Fister Jr., D. Novak and D. Verber, [Data squashing as preprocessing in association rule mining](https://iztok-jr-fister.eu/static/publications/300.pdf), 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, Singapore, 2022, pp. 1720-1725, doi: [10.1109/SSCI51031.2022.10022240](https://doi.org/10.1109/SSCI51031.2022.10022240).
## See also
[1] [NiaARM.jl: Numerical Association Rule Mining in Julia](https://github.com/firefly-cpp/NiaARM.jl)
[2] [arm-preprocessing: Implementation of several preprocessing techniques for Association Rule Mining (ARM)](https://github.com/firefly-cpp/arm-preprocessing)
## π License
This package is distributed under the MIT License. This license can be found online at .
## Disclaimer
This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!
## π Cite us
[^1] Fister Jr, I., Yang, X. S., Fister, I., Brest, J., & Fister, D. (2013). [A brief review of nature-inspired algorithms for optimization](https://arxiv.org/abs/1307.4186). arXiv preprint arXiv:1307.4186.
[^2] Iztok Fister Jr., DuΕ‘an Fister, Iztok Fister, Vili Podgorelec, Sancho Salcedo-Sanz. [Time series numerical association rule mining variants in smart agriculture](https://iztok.link/static/publications/314.pdf). Journal of Ambient Intelligence and Humanized Computing (2023): 1-14.