Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/firmai/machine-learning-asset-management
Machine Learning in Asset Management (by @firmai)
https://github.com/firmai/machine-learning-asset-management
algorithmic-trading assets-management google-colab jupyter-notebook machine-learning portfolio-optimization quant quantitative-finance trading-strategies
Last synced: 25 days ago
JSON representation
Machine Learning in Asset Management (by @firmai)
- Host: GitHub
- URL: https://github.com/firmai/machine-learning-asset-management
- Owner: firmai
- Created: 2019-07-11T11:16:56.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-12-17T07:17:49.000Z (almost 3 years ago)
- Last Synced: 2024-10-01T19:11:47.966Z (about 1 month ago)
- Topics: algorithmic-trading, assets-management, google-colab, jupyter-notebook, machine-learning, portfolio-optimization, quant, quantitative-finance, trading-strategies
- Language: Jupyter Notebook
- Homepage: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420952
- Size: 119 KB
- Stars: 1,672
- Watchers: 91
- Forks: 459
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Machine Learning in Asset Management
If you like this type of content then visit [ML Quant](https://www.ml-quant.com/) site below:
----------
> https://www.ml-quant.com/![](https://user-images.githubusercontent.com/26666267/145840123-bc077dd0-0980-439a-824b-9c09a5f779de.png)
---------
## Part One
Follow this [link](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420952) for SSRN paper.
If you feel like citing something you can use:
[Snow, D (2020)](https://jfds.pm-research.com/content/2/1/10). Machine Learning in Asset Management—Part 1: Portfolio Construction—***Trading Strategies***. The Journal of Financial Data Science, Winter 2020, 2 (1) 10-23.
> This is the first in a series of articles dealing with machine learning in asset management. Asset management can be broken into the following tasks: (1) portfolio construction, (2) risk management, (3) capital management, (4) infrastructure and deployment, and (5) sales and marketing. This article focuses on portfolio construction using machine learning. Historically, algorithmic trading could be more narrowly defined as the automation of sell-side trade execution, but since the introduction of more advanced algorithms, the definition has grown to include idea generation, alpha factor design, asset allocation, position sizing, and the testing of strategies. Machine learning, from the vantage of a decision-making tool, can help in all these areas.
> Editors: Frank J. Fabozzi | Marcos Lopéz de Prado | Joseph Simonian
![](https://docs.google.com/drawings/d/e/2PACX-1vS02qa7XuHJMj2w42DbXodVJG5aLIkE6-YlNQp-Uaw-7xwXtGwP2JIkqEXajCu_E9hGZ50hcpaC1wk8/pub?w=3197&h=2191)
This paper investigates various machine learning trading and portfolio optimisation models and techniques. The notebooks to this paper are Python based. By last count there are about 15 distinct trading varieties and around 100 trading strategies. Code and data are made available where appropriate. The hope is that this paper will organically grow with future developments in machine learning and data processing techniques. All feedback, contributions and criticisms are highly encouraged. You can find my contact details on the website, [FirmAI](https://www.firmai.org).
### Trading Strategies
**1. Tiny CTA**
*Resources*:
See this [paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2695101) and [blog](https://www.linkedin.com/pulse/implement-cta-less-than-10-lines-code-thomas-schmelzer/) for further explanation.
[Data](http://drive.google.com/open?id=12BB8KpFYJSx41yvHhtoLYE_ZZOHNamP8), [Code](https://drive.google.com/open?id=1EwbHhBZL_PRTphR25EbMQA9dV7jC4CjT)
**2. Tiny RL**
*Resources*:
See this [paper](http://cs229.stanford.edu/proj2006/Molina-StockTradingWithRecurrentReinforcementLearning.pdf) and/or [blog](https://teddykoker.com/) for further explanation.
[Data](https://drive.google.com/open?id=1k7J5y1xCssIna45d_Xw78d2frgzD94Li), [Code](https://drive.google.com/open?id=1IRrR6kWjunERzZqrszJ9_q-C1Yj5L0Qj)
**3. Tiny VIX CMF**
*Resources*:
[Data](https://drive.google.com/open?id=1Yv2_mTjZMANoL9fM0ajOsOFEc9MJZAMU), [Code](https://drive.google.com/open?id=186j-gtkXCgzj06WCWDAU9yhYXP9SfgLu)
**4. Quantamental**
*Resources*:
[Web-scrapers](https://drive.google.com/drive/folders/12aZ7vg_3HIdPYZ4GavYY7BjptlAPGFtc?usp=sharing), [Data](https://drive.google.com/open?id=1b0OXiSKnacEDftYKgov619SCfXwpcUWT), [Code](https://drive.google.com/open?id=1PqtFfcr1ejreGr6XIoZCs8jsD7AccuL7), [Interactive Report](https://github.com/firmai/interactive-corporate-report), [Paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420490).
**5. Earnings Surprise**
*Resources*:
[Code](https://drive.google.com/open?id=1KtGauKizS8QISuDCW0SwIxbYPeBwTQxF), [Paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420722)
**6. Bankruptcy Prediction**
*Resources*:
[Data](https://drive.google.com/open?id=1UAIZBNHag-AdWZ4z7nd_y5THQ89D-IQh), [Code](https://drive.google.com/open?id=1Z2ZyvEoWsRfHSa1f7g0m1O-JiXedUdb_), [Paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420889)
**7. Filing Outcomes**
*Resources*:
[Data](https://drive.google.com/open?id=1cDhrrAp07e-2TgrPQginXUNQpdbTpq-u)
**8. Credit Rating Arbitrage**
*Resources:*
[Code](https://drive.google.com/open?id=1i_yERL4i6qp57C0LdSWEV8iYv_rtAZLF)
**9. Factor Investing:**
*Resources:*
[Paper](https://docplayer.net/120877135-Industry-return-predictability-a-machine-learning-approach.html), [Code](https://drive.google.com/open?id=1O0LQ_khTfsbFG5aN3-AqV6DEIRWQ6UuP), [Data](https://drive.google.com/open?id=1cc43729RyOPCsDJ3r46SdHcJJp1AUmaA)
**10. Systematic Global Macro**
*Resources:*
[Data](https://drive.google.com/open?id=1ePKFtfjBrfg3xDtg_dbssykeSd8ZmA1z), [Code](https://drive.google.com/open?id=10bN3kNjl9EMDB5Tt1ArXO8IaxLiPh_Zd)
**11. Mixture Models**
*Resources*:
[Data](https://drive.google.com/open?id=1jmR2Jlk6Hy7J7c2jZFEK1oXptOHbDYLK), [Code](https://drive.google.com/open?id=1tRIt7lIJErWKwoHIuBS6rZbZo2EYBNTN)
**12. Evolutionary**
*Resources*:
[Code](https://drive.google.com/open?id=116Aj9kbZcrCyR5MDu58HkWE53lacAE52), [Repo](https://github.com/huseinzol05/Stock-Prediction-Models/tree/master/free-agent)
**13. Agent Strategy**
*Resources*:
[Code](https://drive.google.com/open?id=1qCvIeui5dJKMXnjUm9_wiPf65VVHdWwz), [Repo](https://github.com/huseinzol05/Stock-Prediction-Models/tree/master/agent)
**14. Stacked Trading**
*Resources*:
[Code](https://drive.google.com/open?id=11SG9KIWUxV9fgrrpAs0QifgGrcdzk2dh), [Blog](https://www.kdnuggets.com/2017/02/stacking-models-imropved-predictions.html)
**15. Deep Trading**
*Resources*:
[Code](https://drive.google.com/open?id=1NoSOI29giC3zOeWNMGQCUUQCRXemD9Ix), [Repo](https://github.com/huseinzol05/Stock-Prediction-Models/tree/master/deep-learning)
## Part Two:
[Snow, D (2020)](https://jfds.pm-research.com/content/early/2020/03/12/jfds.2020.1.029). Machine Learning in Asset Management—Part 2: Portfolio Construction—***Weight Optimization***. The Journal of Financial Data Science, Spring 2020, 2 (1) 10-23.
> This is the second in a series of articles dealing with machine learning in asset management. This article focuses on portfolio weighting using machine learning. Following from the previous article (Snow 2020), which looked at trading strategies, this article identifies different weight optimization methods for supervised, unsupervised, and reinforcement learning frameworks. In total, seven submethods are summarized with the code made available for further exploration.
### Weight Optimisation (JFDS)
**1. Deep Portfolio**
*Resources:*
[Data](https://drive.google.com/open?id=1bJcUZbrZ8HFXs-cd0vGHeMop16Vf3n23), [Code](https://drive.google.com/open?id=1-hOEAiJqaNTUYIyamj26ZvHJNZq9XV09), [Paper](https://arxiv.org/abs/1605.07230)
**2. Linear Regression**
*Resources*:
[Code](https://drive.google.com/open?id=1YDZQvz6Pn2AFDX2Uprfaq9JoGvk7RpJy), [Paper](https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-1082.00120)
**3. Bayesian Sentiment**
*Resources*:
[Code](https://colab.research.google.com/drive/1sMAoJZuuNIRnrivAzxHV5fulMOWO17mb)
**4. PCA and Hierarchical**
*Resource*:
[Code](https://colab.research.google.com/drive/1mm9r6EZOERHYkycDbc74GY7S2U6h1oTc)
**5. HRP**
*Resources*:
[Data](https://drive.google.com/open?id=198fpHhD973i3rKa9D7oz-SrmBwPykQEc), [Code](https://drive.google.com/open?id=1z3Fe7QXZ6c566KOG3HtQEfCc84UAGwFf)
**6. Network Graph**
*Resources*:
[Code](https://colab.research.google.com/drive/10WNiVuICvFajW2uTDrwI6w7aSUkjINPl)
**7. RL Deep Deterministic**
*Resources*:
[Code](https://colab.research.google.com/drive/1L3-D2ZmGZkPRsB9gb5BviGkSkMTLti7_)### Weight Optimisation (SSRN)
**1. Online Portfolio Selection (OLPS)**
*Resources*:
[Code](https://drive.google.com/open?id=1TPiJE6klq7D1ZzwoKhZtPA6WzwD1txHD)## Other (SSRN)
**1. GANVaR**
*Resources*:
[Code](https://drive.google.com/open?id=1C0QLVV2iC8QVvCG7F4bhP8dP3wuGkJ8E)
****
[*All Data and Code*](https://drive.google.com/open?id=1utWE_xx1N93BTDkofiWPbhjcfh_W8_aK)****
Top 1% SSRN paper downloads**All Time Top 10 [Paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420952) :**
[Applied Computing eJournal](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=3191581&netorjrnl=jrnl), [CompSciRN: Algorithms](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=3176752&netorjrnl=jrnl), [CompSciRN: Clustering](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=3176752&netorjrnl=jrnl),
[Banking & Financial Institutions eJournals](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=320840&netorjrnl=ntwk),
[CompSciRN: Artificial Intelligence](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=3178496&netorjrnl=jrnl),
[Econometric Modeling: Capital Markets - Portfolio Theory eJournal](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=2167133&netorjrnl=jrnl),
[Machine Learning eJournal](https://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=3178495&netorjrnl=jrnl)#### Other Projects
Other FirmAI projects include **[AtsPy](https://github.com/firmai/atspy)** automating Python's best time series models,
**[PandaPy](https://github.com/firmai/pandapy)** a data structure solutions that has the speed of NumPy and the usability of Pandas (10x to 50x faster), **[FairPut](https://github.com/firmai/fairput)** a holistic approach to implement fair machine learning outputs at the individual and group level, **[PandasVault](https://github.com/firmai/pandasvault)** a package for advanced pandas functions and code snippets, and **[ICR](https://github.com/firmai/interactive-corporate-report)** an interactive and fully automated corporate report built with Python.