Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/fisproject/R-Study

R Examples
https://github.com/fisproject/R-Study

Last synced: 3 months ago
JSON representation

R Examples

Awesome Lists containing this project

README

        

R-Study
===

## Overview
R Examples

#### Programming with R

| directory | description | packages |
|-----------|-------------|---------|
| functional-programming | functional programming in R | {base} |
| inside-r | understand the internal implementation in R | {pryr} |
| meta-programming | meta programming in R | {base} |

#### Data Preprocessing and Visualization

| directory | description | packages |
|-----------|-------------|---------|
| correlation | correlation | {psych}, {polycor}, {Kendall}, {vcdExtra}, {lsr} |
| data-generation | data generation | {MASS} |
| data-handling | data handling | {dplyr}, {tidyr}, {purrr}, {dummies} |
| ggplot2 | visualization | {ggplot2}, {GGally}, {ggfortify} |
| reading-data | reading data | {data.table}, {jsonlite}, {jqr}, {readxl}, {openxlsx}, {RMySQL}, {aws.s3} |
| stats | basic statistics | {base} |
| strings | string manipulation in R | {stringr} |
| transformation | Box-Cox transformation | {car} |
| lubridate | Make Dealing with Dates | {lubridate} |

#### Statistical Model

| directory | description | packages |
|-----------|-------------|---------|
| discrete-choice-model | discrete choice model | {mlogit}, {MASS}, {ordinal} |
| glm | generalized linear model | {stats}, {ROCR} |
| lda | linear discriminant | {MASS} |
| lm | linear model | {stats} |
| lme | linear mixed effects model | {lme4} |
| pca | principal component analysis | {kernlab} |
| regularization | L1/L2 regularization and elastic net | {glmnet}, {useful} |
| stan | MCMC (NUTS) | {rstan} |
| testing | statistical hypothesis testing | {lawstat}, {pwr} |

#### Statistical Machine Learning

| directory | description | packages |
|-----------|-------------|---------|
| bayesian-network | bayesian-network | {bnlearn} |
| cca | canonical correlation analysis | {kernlab} |
| gradient-boosting | gradient boosting | {xgboost} |
| knn | k-nearest neighbor | {class}, {FNN} |
| kmeans | k-means clustering | {stats} |
| random-forest | Random Forest | {randomForest} |
| recommender | recommendation algorithms | {recommenderlab} |
| naive-bayes | naive bayes | {e1071} |
| svm | support vector machine | {kernlab}, {caret} |

#### Time Series Analysis

| directory | description | packages |
|-----------|-------------|---------|
| arima | AR, ARMA, ARIMA models | {stats} |
| dlm | dynamic Linear models | {dlm} |
| forecast | econometric method | {tseries}, {forecast}, {quantmod}, {PerformanceAnalytics} |
| garch | GARCH and VaR models | {rugarch} |
| var | VAR model | {vars} |

#### Others

| directory | description | packages |
|-----------|-------------|---------|
| arules | association rules | {arules} |
| causality | Causality Analysis | {Matching}, {fastICA} |
| design-of-experiments | design of experiments | {DoE.base} |

## Licence
[MIT](http://opensource.org/licenses/MIT)

## Author
[t2sy](https://github.com/fisproject)