An open API service indexing awesome lists of open source software.

https://github.com/fitushar/brain-tissue-segmentation-using-expectation-maximization

Medical Image Segmentation and Applications (MISA) LAB task.
https://github.com/fitushar/brain-tissue-segmentation-using-expectation-maximization

brain-tissue-segmentation dice expectation-maximization lab-task labtasks misa seg slice

Last synced: 3 months ago
JSON representation

Medical Image Segmentation and Applications (MISA) LAB task.

Awesome Lists containing this project

README

        

# Brain-Tissue-Segmentation-Using-Expectation-Maximization
Medical Image Segmentation and Applications (MISA) LAB task.

Functions Used in two codes::

1. show_slice(img, slice_no):

Inputs: Name of the Image Array, img=name.get_fdata()
Slice number you want to knoe,Slice no = 24
output: Plot Image.
2. gmm(x, mean, cov):

Inputs:
x (numpy.ndarray): nxd dimentional array. where n= number of samples
d= dimention
mean (numpy.ndarray): d-dimentional mean value.
cov (numpy.ndarray): dxd dimentional covariance matrix.

output:
(numpy.ndarray): Gaussian mixture for every point in feature space.

3. dice_similarity(Seg_img, GT_img,state):

Inputs:
Seg_img (numpy.ndarray): Segmented Image.
GT_img (numpy.ndarray): Ground Truth Image.
State: "nifti" if the images are nifti file
"arr" if the images are an ndarray

output:
Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.

4. Dice_and_Visualization_of_one_slice(Seg_img, GT_img,state,number_of_slice):
"""Example Use: Dice_and_Visualization_of_one_slice(Seg,Label_img,"arr",30)"""

Inputs:
Seg_img (numpy.ndarray): Segmented Image.
GT_img (numpy.ndarray): Ground Truth Image.
State: "nifti" if the images are nifti file
"arr" if the images are an ndarray
output:
Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
Ploting image