https://github.com/fitushar/brain-tissue-segmentation-using-expectation-maximization
Medical Image Segmentation and Applications (MISA) LAB task.
https://github.com/fitushar/brain-tissue-segmentation-using-expectation-maximization
brain-tissue-segmentation dice expectation-maximization lab-task labtasks misa seg slice
Last synced: 3 months ago
JSON representation
Medical Image Segmentation and Applications (MISA) LAB task.
- Host: GitHub
- URL: https://github.com/fitushar/brain-tissue-segmentation-using-expectation-maximization
- Owner: fitushar
- Created: 2018-11-11T15:43:23.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-01-12T22:41:47.000Z (over 6 years ago)
- Last Synced: 2025-01-01T15:43:59.279Z (5 months ago)
- Topics: brain-tissue-segmentation, dice, expectation-maximization, lab-task, labtasks, misa, seg, slice
- Language: Python
- Size: 17 MB
- Stars: 1
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Brain-Tissue-Segmentation-Using-Expectation-Maximization
Medical Image Segmentation and Applications (MISA) LAB task.Functions Used in two codes::
1. show_slice(img, slice_no):
Inputs: Name of the Image Array, img=name.get_fdata()
Slice number you want to knoe,Slice no = 24
output: Plot Image.
2. gmm(x, mean, cov):
Inputs:
x (numpy.ndarray): nxd dimentional array. where n= number of samples
d= dimention
mean (numpy.ndarray): d-dimentional mean value.
cov (numpy.ndarray): dxd dimentional covariance matrix.
output:
(numpy.ndarray): Gaussian mixture for every point in feature space.
3. dice_similarity(Seg_img, GT_img,state):
Inputs:
Seg_img (numpy.ndarray): Segmented Image.
GT_img (numpy.ndarray): Ground Truth Image.
State: "nifti" if the images are nifti file
"arr" if the images are an ndarray
output:
Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
4. Dice_and_Visualization_of_one_slice(Seg_img, GT_img,state,number_of_slice):
"""Example Use: Dice_and_Visualization_of_one_slice(Seg,Label_img,"arr",30)"""
Inputs:
Seg_img (numpy.ndarray): Segmented Image.
GT_img (numpy.ndarray): Ground Truth Image.
State: "nifti" if the images are nifti file
"arr" if the images are an ndarray
output:
Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM.
Ploting image