Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/flippiecoetser/storage

This R Package is used to perform common data operations on various data stores
https://github.com/flippiecoetser/storage

r r-package storage

Last synced: 4 days ago
JSON representation

This R Package is used to perform common data operations on various data stores

Awesome Lists containing this project

README

        

# Storage

![r-universe](https://flippiecoetser.r-universe.dev/badges/Storage)

This R Package provides a standard interface for performing data operations on various data stores. Currently, a `memory` and `odbc` driver-based `Storage` is supported. To configure an `odbc` driver-based data store, an `ODBC.Configurator` is available to retrieve the required configuration parameters from a local `.Renviron` file. Lastly, this package includes an example service in which a `Storage` instance is injected into to enable persistence.

Below is an overview of the different functions available on each of the components:

## ODBC Configurator

Two utility functions are provided:

1. `open.config.file`
Opens the `.Renviron` file in your IDE. This function only works when using either VS Code or RStudio.

2. `get.config`
Retrieves the configuration parameters from your local `.Renviron` file. By default a preset configuration is assumed when an OS DSN has been set up. A preset type configuration assumes a `DSN`, `UID` and `PWD` variables have been defined in the `.Renviron` file. If no OS DSN has been set up, `get.config` can be invoked with `type = 'Manual'` flag. When retrieving configuration parameters using the `type = 'Manual'` flag it is assumed `DRIVER`, `SERVER`, `DATABASE`, `UID`, `PWD` variables have been defined in the `.Renviron` file.

## Storage Component

Six functions are provided, five of which are common data operations and one function to execute custom queries:

1. `add`
2. `retrieve`
3. `retrieve.where.id`
4. `modify`
5. `remove`

Custom data operations can be added using the `execute.query` function. The `execute.query` function takes a SQL `query`, passed in as a character data type, and returns a data frame.

Lastly, the `retrieve.where.id` and `modify` operations assumes the data model has an `id` attribute. The `id` attribute is used to uniquely identify a record in the data store.

## Todo Data Service

Five functions are provided:

1. `add`
2. `retrieve`
3. `retrieve.where.id`
4. `modify`
5. `remove`

The `Todo.Service` is an example of how to use the `Storage` component. The `Todo.Service` is a simple data service that performs CRUD operations on a `Todo` data model.

> Note: This package is a [Standard](https://github.com/hassanhabib/The-Standard) compliant package.

## Installation

At the time of writing this README, the package is not available on CRAN. However, it can be installed using `devtools`.

#### Install Dependencies

1. This package has two dependencies: `Validate`, `Environment`, `Query`:

```r
devtools::install_github("https://github.com/FlippieCoetser/Validate")
devtools::install_github("https://github.com/FlippieCoetser/Environment")
devtools::install_github("https://github.com/FlippieCoetser/Query")
```

### Install via GitHub

1. Use Devtools

```r
devtools::install_github("https://github.com/FlippieCoetser/Storage")
```

### Clone, Build and Install Locally

1. Clone the repository

```bash
git clone https://github.com/FlippieCoetser/Storage.git
```

2. Build and Generate `.tar.gz` file

```r
devtools::build()
```

3. Install the package

```r
install.packages("path_to_file/tar_gz_file", repos = NULL, type = "source")
```

## Loading the Package

There are two ways to load the package:

1. Use the library function to load all available components into the global namespace
2. Create a new instance of a component using the package namespace

### User Global Namespace

Three components are loaded into the global namespace when using the library function to load the package.

```r
library(Storage)
```

### User Package Namespace

When using the package namespace, the three components can be accessed as follows:

```r
Storage::ODBC.Configurator()
Storage::Storage()
Storage::Todo.Service()
```

# Usage

Using the `Todo.Service` component, two use cases will be demonstrated, one using a `memory` data store and the other using an `odbc` data store.

## Initialize

### In-Memory Data Store

1. Create an empty `configuration`

```r
configuration <- list()
```

2. Create a new instance of the `Storage` component with `type = 'memory'`.

```r
storage <- configuration |> Storage::Storage(type = 'memory')
```

### ODBC Data Store

1. Create a new instance of `ODBC.Configurator`

```r
odbc.configurator <- Storage::ODBC.Configurator()
```

2. retrieve the configuration parameters from the local `.Renviron` file

```r
configuration <- odbc.configurator[['get.config']]()
```

3. Create a new instance of `Storage` component.

```r
storage <- configuration |> Storage::Storage()
```

## Use Cases

1. When using a storage with a `memory` based store, seed the store with mock data

```r
table <- 'Todo'
todos <- data.frame(
id = c('7ab3df6f-2e8f-44b4-87bf-3004cf1c16ae',
'7bfef861-6fe9-46da-9ad2-6a58779ccdcd',
'd3b59bf0-14f0-4444-9ec9-1913e7256ee4'),
task = c('Task.1','Task.2','Task.3'),
status = c('New','New','Done')
)

todos |> storage[['seed.table']](table)
```

2. select a `storage` instance based on your desired data store and create a new `Todo.Service` instance

```r
todo.service <- storage |> Todo.Broker() |> Todo.Service()
```

### Add Todo

1. Create a new `todo`

```r
todo <- 'Task' |> Todo()
```

2. Add the `todo` into the data store

```r
todo |> todo.service[['add']]()
```

### retrieve Todos

1. retrieve all `todos` in the data store

```r
todos <- todo.service[['retrieve']]()
```

### retrieve Todo Where Id

1. Use the `todo` created in a previous step and extract its `id`

```r
id <- todo[['id']]
```

2. retrieve the `todo` with the extracted `id`

```r
todo <- id |> todo.service[['retrieve.where.id']]()
```

### modify Todo

1. Use the `todo` retrieved in the previous step and update its `status`

```r
todo[['status']] <- "Done"
```

2. modify the `todo` in the data store

```r
todo |> todo.service[['modify']]()
```

### remove Todo

1. Use the `todo` retrieved in the previous step and extract its `id`

```r
id <- todo[['id']]
```

2. remove the `todo` with the extracted `id`

```r
id |> todo.service[['remove']]()
```