Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/floodsung/Meta-Learning-Papers
Meta Learning / Learning to Learn / One Shot Learning / Few Shot Learning
https://github.com/floodsung/Meta-Learning-Papers
deep-learning few-shot-learning learning-to-learn meta-learning one-shot-learning
Last synced: 3 months ago
JSON representation
Meta Learning / Learning to Learn / One Shot Learning / Few Shot Learning
- Host: GitHub
- URL: https://github.com/floodsung/Meta-Learning-Papers
- Owner: floodsung
- Created: 2017-05-07T03:08:42.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-11-26T04:33:02.000Z (about 6 years ago)
- Last Synced: 2024-07-31T23:44:33.489Z (5 months ago)
- Topics: deep-learning, few-shot-learning, learning-to-learn, meta-learning, one-shot-learning
- Size: 9.77 KB
- Stars: 2,606
- Watchers: 169
- Forks: 474
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-few-shot-meta-learning - awesome meta learning
- awesome-interesting-topics-in-nlp - ML
- Algorithms-Cheatsheet-Resources - Meta Learning / Learning to Learn / One Shot Learning / Few Shot Learning
- Awesome-Paper-List - Meta Learning
- awesome-machine-learning-resources - **[List - Learning-Papers?style=social) (Table of Contents)
README
## Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning
### 1 Legacy Papers
**[1]** Nicolas Schweighofer and Kenji Doya. **Meta-learning in reinforcement learning**. Neural Networks, 16(1):5–9, 2003.
**[2]** Sepp Hochreiter, A Steven Younger, and Peter R Conwell. **Learning to learn using gradient descent**. In
International Conference on Artificial Neural Networks, pages 87–94. Springer, 2001.**[3]** Kunikazu Kobayashi, Hiroyuki Mizoue, Takashi Kuremoto, and Masanao Obayashi. **A meta-learning method based on temporal difference error**. In International Conference on Neural Information Processing, pages 530–537. Springer, 2009.
**[4]** Sebastian Thrun and Lorien Pratt. **Learning to learn: Introduction and overview**. In Learning to learn, pages 3–17. Springer, 1998.
**[5]** A Steven Younger, Sepp Hochreiter, and Peter R Conwell. **Meta-learning with backpropagation**. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3. IEEE, 2001.
**[6]** Ricardo Vilalta and Youssef Drissi. **A perspective view and survey of meta-learning**. Artificial
Intelligence Review, 18(2):77–95, 2002.**[7]** Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. **Zero-data learning of new tasks**. In AAAI, volume 1, pp. 3, 2008.
**[8]** Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum.**One shot learning of simple visual concepts**. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society, volume 172, pp. 2, 2011.
**[9]** Li Fei-Fei, Rob Fergus, and Pietro Perona. **One-shot learning of object categories**. IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006.
**[10]** Ju ̈rgen Schmidhuber. **A neural network that embeds its own meta-levels**. In Neural Networks, 1993., IEEE International Conference on, pp. 407–412. IEEE, 1993.
**[11]** Sebastian Thrun. **Lifelong learning algorithms**. In Learning to learn, pp. 181–209. Springer, 1998.
**[12]** Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. **Learning a synaptic learning rule**. Universite ́ de Montre ́al, De ́partement d’informatique et de recherche ope ́rationnelle, 1990.
**[13]** Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. **On the search for new learning rules for ANNs**. Neural Processing Letters, 2(4):26–30, 1995.
**[14]** Rich Caruana. **Learning many related tasks at the same time with backpropagation**. Advances in
neural information processing systems, pp. 657–664, 1995.**[15]** Giraud-Carrier, Christophe, Vilalta, Ricardo, and Brazdil, Pavel. **Introduction to the special issue on meta-learning**. Machine learning, 54(3):187–193, 2004.
**[16]** Jankowski, Norbert, Duch, Włodzisław, and Grabczewski, Krzysztof. **Meta-learning in computational intelligence**, volume 358. Springer Science & Business Media, 2011.
**[17]** N. E. Cotter and P. R. Conwell. **Fixed-weight networks can learn**. In International Joint Conference on Neural Networks, pages 553–559, 1990.
**[18]** J. Schmidhuber. **Evolutionary principles in self-referential learning; On learning how to learn: The meta-meta-...
hook**. PhD thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.**[19]** J. Schmidhuber. **Learning to control fast-weight memories**: An alternative to dynamic recurrent networks.
Neural Computation, 4(1):131–139, 1992.**[20]** Jurgen Schmidhuber, Jieyu Zhao, and Marco Wiering. **Simple principles of metalearning**. Technical report, SEE, 1996.
**[21]** Thrun, Sebastian and Pratt, Lorien. **Learning to learn**. Springer Science & Business Media, 1998.
## 2 Recent Papers
**[1]** Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew W, Pfau, David, Schaul, Tom, and de Freitas, Nando. **Learning to learn by gradient descent by gradient descent**. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016
**[2]** Ba, Jimmy, Hinton, Geoffrey E, Mnih, Volodymyr, Leibo, Joel Z, and Ionescu, Catalin. **Using fast weights to attend to the recent past**. In Advances In Neural Information Processing Systems, pp. 4331–4339, 2016
**[3]** David Ha, Andrew Dai and Le, Quoc V. **Hypernetworks**. In ICLR 2017, 2017.
**[4]** Koch, Gregory. **Siamese neural networks for one-shot image recognition**. PhD thesis, University of Toronto, 2015.
**[5]** Lake, Brenden M, Salakhutdinov, Ruslan R, and Tenenbaum, Josh. **One-shot learning by inverting a compositional causal process**. In Advances in neural information processing systems, pp. 2526–2534, 2013.
**[6]** Santoro, Adam, Bartunov, Sergey, Botvinick, Matthew, Wierstra, Daan, and Lillicrap, Timothy. **Meta-learning with memory-augmented neural networks**. In Proceedings of The 33rd International Conference on Machine Learning, pp. 1842–1850, 2016.
**[7]** Vinyals, Oriol, Blundell, Charles, Lillicrap, Tim, Wierstra, Daan, et al. **Matching networks for one shot learning**. In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.
**[8]** Kaiser, Lukasz, Nachum, Ofir, Roy, Aurko, and Bengio, Samy. **Learning to remember rare events**. In ICLR 2017, 2017.
**[9]** P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell. **Learning to navigate in complex environments**. Techni- cal report, DeepMind, 2016.
**[10]** B. Zoph and Q. V. Le. **Neural architecture search with reinforcement learning**. Technical report, submitted to ICLR 2017, 2016.
**[11]** Y. Duan, J. Schulman, X. Chen, P. Bartlett, I. Sutskever, and P. Abbeel. **Rl2: Fast reinforcement learning via slow reinforcement learning**. Technical report, UC Berkeley and OpenAI, 2016.
**[12]** Li, Ke and Malik, Jitendra. **Learning to optimize**. International Conference on Learning Representations (ICLR), 2017.
**[13]** Edwards, Harrison and Storkey, Amos. **Towards a neural statistician**. International Conference on Learning Representations (ICLR), 2017.
**[14]** Parisotto, Emilio, Ba, Jimmy Lei, and Salakhutdinov, Ruslan. **Actor-mimic: Deep multitask and transfer reinforcement learning**. International Conference on Learning Representations (ICLR), 2016.
**[15]** Ravi, Sachin and Larochelle, Hugo. **Optimization as a model for few-shot learning**. In International Conference on Learning Representations (ICLR), 2017.
**[16]** Finn, C., Abbeel, P., & Levine, S. (2017). **Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks**. arXiv preprint arXiv:1703.03400.
**[17]** Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T. P., & de Freitas, N. (2016). **Learning to Learn for Global Optimization of Black Box Functions**. arXiv preprint arXiv:1611.03824.
**[18]** Munkhdalai T, Yu H. **Meta Networks**. arXiv preprint arXiv:1703.00837, 2017.
**[19]** Duan Y, Andrychowicz M, Stadie B, et al. **One-Shot Imitation Learning**. arXiv preprint arXiv:1703.07326, 2017.
**[20]** Woodward M, Finn C. **Active One-shot Learning**. arXiv preprint arXiv:1702.06559, 2017.
**[21]** Wichrowska O, Maheswaranathan N, Hoffman M W, et al. **Learned Optimizers that Scale and Generalize**. arXiv preprint arXiv:1703.04813, 2017.
**[22]** Hariharan, Bharath, and Ross Girshick. **Low-shot visual object recognition** arXiv preprint arXiv:1606.02819 (2016).
**[23]** Wang J X, Kurth-Nelson Z, Tirumala D, et al. **Learning to reinforcement learn**. arXiv preprint arXiv:1611.05763, 2016.
**[24]** Flood Sung, Zhang L, Xiang T, Hospedales T, et al. **Learning to Learn: Meta-Critic Networks for Sample Efficient Learning**. arXiv preprint arXiv:1706.09529, 2017.
**[25]** Li Z, Zhou F, Chen F, et al. **Meta-SGD: Learning to Learn Quickly for Few Shot Learning**. arXiv preprint arXiv:1707.09835, 2017.
**[26]** Mishra N, Rohaninejad M, Chen X, et al. **Meta-Learning with Temporal Convolutions**. arXiv preprint arXiv:1707.03141, 2017.
**[27]** Frans K, Ho J, Chen X, et al. **Meta Learning Shared Hierarchies**. arXiv preprint arXiv:1710.09767, 2017.
**[28]** Finn C, Yu T, Zhang T, et al. **One-shot visual imitation learning via meta-learning**. arXiv preprint arXiv:1709.04905, 2017.
**[29]** Flood Sung, Yongxin Yang, Zhang Li, Xiang T,Philip Torr, Hospedales T, et al **Learning to Compare: Relation Network for Few Shot Learning**. arXiv preprint arXiv:1711.06025, 2017.
**[30]** Brenden M Lake, Ruslan Salakhutdinov, Joshua B Tenenbaum **Human-level concept learning through probabilistic program induction**. In Science, volume 350, pp. 1332-1338, 2015.
**[32]** Xu D, Nair S, Zhu Y, et al. **Neural task programming: Learning to generalize across hierarchical tasks**. arXiv preprint arXiv:1710.01813, 2017.
**[33]** Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). **Learning feed-forward one-shot learners**. In Advances in Neural Information Processing Systems (pp. 523-531).
**[34]** Wang, Yu-Xiong, and Martial Hebert. **Learning to learn: Model regression networks for easy small sample learning.** European Conference on Computer Vision. Springer International Publishing, 2016.
**[35]** Triantafillou, Eleni, Hugo Larochelle, Jake Snell, Josh Tenenbaum, Kevin Jordan Swersky, Mengye Ren, Richard Zemel, and Sachin Ravi. **Meta-Learning for Semi-Supervised Few-Shot Classification.** ICLR 2018.
**[36]** Rabinowitz, Neil C., Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Eslami, and Matthew Botvinick. **Machine Theory of Mind.** arXiv preprint arXiv:1802.07740 (2018).
**[37]** Reed, Scott, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Eslami, Danilo Rezende, Oriol Vinyals, and Nando de Freitas. **Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions.** arXiv preprint arXiv:1710.10304 (2017).
**[38]** Xu, Zhongwen, Hado van Hasselt, and David Silver. **Meta-Gradient Reinforcement Learning** arXiv preprint arXiv:1805.09801 (2018).
**[39]** Xu, Kelvin, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. **Learning a Prior over Intent via Meta-Inverse Reinforcement Learning** arXiv preprint arXiv:1805.12573 (2018).
**[40]** Finn, Chelsea, Kelvin Xu, and Sergey Levine. **Probabilistic Model-Agnostic Meta-Learning** arXiv preprint arXiv:1806.02817 (2018).
**[41]** Gupta, Abhishek, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. **Unsupervised Meta-Learning for Reinforcement Learning** arXiv preprint arXiv:1806.04640(2018).
**[42]** Yoon, Sung Whan, Jun Seo, and Jaekyun Moon. **Meta Learner with Linear Nulling** arXiv preprint arXiv:1806.01010 (2018).
**[43]** Kim, Taesup, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn. **Bayesian Model-Agnostic Meta-Learning** arXiv preprint arXiv:1806.03836 (2018).
**[44]** Gupta, Abhishek, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. **Meta-Reinforcement Learning of Structured Exploration Strategies** arXiv preprint arXiv:1802.07245 (2018).
**[45]** Clavera, Ignasi, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn. **Learning to Adapt: Meta-Learning for Model-Based Control** arXiv preprint arXiv:1803.11347 (2018).
**[46]** Houthooft, Rein, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and Pieter Abbeel. **Evolved policy gradients** arXiv preprint arXiv:1802.04821 (2018).
**[47]** Xu, Tianbing, Qiang Liu, Liang Zhao, Wei Xu, and Jian Peng. **Learning to Explore with Meta-Policy Gradient** arXiv preprint arXiv:1803.05044 (2018).
**[48]** Stadie, Bradly C., Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya Sutskever. **Some considerations on learning to explore via meta-reinforcement learning** arXiv preprint arXiv:1803.01118 (2018).
**[49]** Luca Bertinetto, Joao F. Henriques, Philip Torr and Andrea Vedaldi. **Meta-learning with differentiable closed-form solvers** arXiv preprint arXiv:1805.08136 (2018).
**[50]** Yoonho Lee, Seungjin Choi. **Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace.** ICML 2018.