An open API service indexing awesome lists of open source software.

https://github.com/florale/multilevelcoda

multilevelcoda R package for Bayesian multilevel compositional data analysis
https://github.com/florale/multilevelcoda

bayesian-inference compositional-data-analysis multilevel-models multilevelcoda r r-package

Last synced: 21 days ago
JSON representation

multilevelcoda R package for Bayesian multilevel compositional data analysis

Awesome Lists containing this project

README

        

# multilevelcoda

[![R-CMD-check](https://github.com/florale/multilevelcoda/workflows/R-CMD-check/badge.svg)](https://github.com/florale/multilevelcoda/actions)
[![CRAN Version](https://www.r-pkg.org/badges/version/multilevelcoda)](https://cran.r-project.org/package=multilevelcoda)
[![lifecycle](https://lifecycle.r-lib.org/articles/figures/lifecycle-experimental.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental)

## Overview

This package provides functions to model compositional data in
a multilevel framework using full Bayesian inference.
It integrates the principes of Compositional Data Analysis (CoDA)
and Multilevel Modelling and supports both compositional data as
an outcome and predictors in a wide range of
generalized (non-)linear multivariate multilevel models.

## Installation
To install the latest release version from CRAN, run

```r
install.packages("multilevelcoda")

```

The current developmental version can be downloaded from github via

```r
if (!requireNamespace("remotes")) {
install.packages("remotes")
}
remotes::install_github("florale/multilevelcoda")
```

Because multilevelcoda is built on brms, which is based on Stan, a C++ compiler is required.
The program Rtools (available on https://cran.r-project.org/bin/windows/Rtools/) comes with a C++ compiler for Windows. On Mac, Xcode is required. For further instructions on how to get the compilers running, see the prerequisites section on https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started.

## Resources

You can learn about the package from these vignettes:

- [Introduction to Compositional Multilevel Modelling](https://florale.github.io/multilevelcoda/articles/A-introduction.html)
- [Multilevel Models with Compositional Predictors](https://florale.github.io/multilevelcoda/articles/B-composition-MLM.html)
- [Multilevel Models with Compositional Outcome](https://florale.github.io/multilevelcoda/articles/C-composition-MMLM.html)
- [Compositional Substitution Multilevel Analysis](https://florale.github.io/multilevelcoda/articles/D-substitution.html)

## Citing `multilevelcoda` and related software
When using multilevelcoda, please cite one or more of the following publications:

- Le F., Dumuid D., Stanford T. E., Wiley J. F. (2024).
Bayesian multilevel compositional data analysis with the R package multilevelcoda.
*arXiv preprint arXiv:2411.12407*.
- Le, F., Stanford, T. E., Dumuid, D., & Wiley, J. F. (2024).
Bayesian Multilevel Compositional Data Analysis:
Introduction, Evaluation, and Application.
*arXiv preprint arXiv:2405.03985*.

As multilevelcoda depends on brms and Stan, please also consider citing:

- Bürkner P. C. (2017). brms: An R Package for Bayesian Multilevel
Models using Stan. *Journal of Statistical Software*. 80(1), 1-28.
doi.org/10.18637/jss.v080.i01
- Bürkner P. C. (2018). Advanced Bayesian Multilevel Modeling with the
R Package brms. *The R Journal*. 10(1), 395-411.
doi.org/10.32614/RJ-2018-017
- Bürkner P. C. (2021). Bayesian Item Response Modeling in R with brms
and Stan. *Journal of Statistical Software*, 100(5), 1-54.
doi.org/10.18637/jss.v100.i05
- Stan Development Team. YEAR. Stan Modeling Language Users Guide and
Reference Manual, VERSION.
- Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B.,
Betancourt M., Brubaker M., Guo J., Li P., and Riddell A. (2017).
Stan: A probabilistic programming language. *Journal of Statistical
Software*. 76(1). doi.org/10.18637/jss.v076.i01