https://github.com/florent-leclercq/pyselfi
Simulator Expansion for Likelihood-Free Inference (SELFI): a python implementation
https://github.com/florent-leclercq/pyselfi
approximate-bayesian-computation bayesian-data-analysis cosmology galaxy-clustering large-scale-structure likelihood-free-inference
Last synced: 29 days ago
JSON representation
Simulator Expansion for Likelihood-Free Inference (SELFI): a python implementation
- Host: GitHub
- URL: https://github.com/florent-leclercq/pyselfi
- Owner: florent-leclercq
- License: gpl-3.0
- Created: 2019-07-18T11:37:20.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2023-01-27T15:11:19.000Z (about 3 years ago)
- Last Synced: 2025-09-23T18:52:58.444Z (5 months ago)
- Topics: approximate-bayesian-computation, bayesian-data-analysis, cosmology, galaxy-clustering, large-scale-structure, likelihood-free-inference
- Language: Jupyter Notebook
- Homepage: http://pyselfi.florent-leclercq.eu/
- Size: 44.7 MB
- Stars: 10
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# pySELFI #
[](https://arxiv.org/abs/1902.10149)
[](https://arxiv.org/abs/2209.11057)
[](https://github.com/florent-leclercq/pyselfi)
[](https://github.com/florent-leclercq/pyselfi/commits)
[](https://zenodo.org/badge/latestdoi/197575311)
[](https://github.com/florent-leclercq/pyselfi/blob/master/LICENSE)
[](https://badge.fury.io/py/pyselfi)
[](http://pyselfi.readthedocs.io/en/latest/)
[](http://pyselfi.florent-leclercq.eu/)
Simulator Expansion for Likelihood-Free Inference (SELFI): a python implementation.
## Documentation ##
The code's homepage is [https://pyselfi.florent-leclercq.eu](https://pyselfi.florent-leclercq.eu). The documentation is available on readthedocs at [https://pyselfi.readthedocs.io/](https://pyselfi.readthedocs.io/). Limited user-support may be asked from the main author, Florent Leclercq.
## Contributors ##
* Florent Leclercq, florent.leclercq@iap.fr
## Reference ##
To acknowledge the use of pySELFI in research papers, please cite its [doi:10.5281/zenodo.3341588](https://doi.org/10.5281/zenodo.3341588) (or for the latest version, see the badge above), as well as the papers [Leclercq et al. (2019)](https://arxiv.org/abs/1902.10149) and [Leclercq (2022)](https://arxiv.org/abs/2209.11057):
* *Primordial power spectrum and cosmology from black-box galaxy surveys*
F. Leclercq, W. Enzi, J. Jasche, A. Heavens
MNRAS 490, 4237 (2019), arXiv:1902.10149 [astro-ph.CO] [ADS] [pdf]
* *Simulation-based inference of Bayesian hierarchical models while checking for model misspecification*
F. Leclercq
Proceedings of the 41st International Conference on Bayesian and Maximum Entropy methods in Science and Engineering (MaxEnt2022), 18-22 July 2022, Paris, France
Physical Sciences Forum 5, 4 (2022), arXiv:2209.11057 [astro-ph.CO] [ADS] [pdf]
@ARTICLE{pySELFI1,
author = {{Leclercq}, Florent and {Enzi}, Wolfgang and {Jasche}, Jens and {Heavens}, Alan},
title = "{Primordial power spectrum and cosmology from black-box galaxy surveys}",
journal = {\mnras},
keywords = {methods: statistical, cosmological parameters, large-scale structure of Universe, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
year = "2019",
month = "Dec",
volume = {490},
number = {3},
pages = {4237-4253},
doi = {10.1093/mnras/stz2718},
archivePrefix = {arXiv},
eprint = {1902.10149},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4237L},
}
@ARTICLE{pySELFI2,
author = {{Leclercq}, Florent},
title = "{Simulation-based inference of Bayesian hierarchical models while checking for model misspecification}",
journal = {Physical Sciences Forum},
keywords = {Statistics - Methodology, Astrophysics - Instrumentation and Methods for Astrophysics, Mathematics - Statistics Theory, Quantitative Biology - Populations and Evolution, Statistics - Machine Learning},
year = "2022",
month = "Sep",
volume = {5},
pages = {4},
doi = {10.3390/psf2022005004},
archivePrefix = {arXiv},
eprint = {2209.11057},
primaryClass = {stat.ME},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220911057L},
}
## License ##
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. By downloading and using pySELFI, you agree to the [LICENSE](https://github.com/florent-leclercq/pyselfi/blob/master/LICENSE), distributed with the source code in a text file of the same name.