Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/flukso/tmpo-py
Python client library for tmpo
https://github.com/flukso/tmpo-py
Last synced: about 2 months ago
JSON representation
Python client library for tmpo
- Host: GitHub
- URL: https://github.com/flukso/tmpo-py
- Owner: flukso
- License: mit
- Created: 2014-09-12T13:00:21.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2022-02-09T12:47:37.000Z (almost 3 years ago)
- Last Synced: 2024-09-22T01:45:20.306Z (3 months ago)
- Language: Python
- Size: 57.6 KB
- Stars: 3
- Watchers: 4
- Forks: 10
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## 1. Overview ##
Tmpo-py is a Python 2.7/3.x client library for tmpo. It synchronizes tmpo blocks with the Flukso REST API, caching them locally in a SQLite DB after download. A Pandas Time Series object can be built from these tmpo blocks with proper head/tail truncating.
## 2. Commands ##
Create a tmpo session object, which sets up a connection to the $HOME/.tmpo/tmpo.sqlite3 database. If the latter does not exist, it is initialized with the proper tables.
>>> import tmpo
>>> s = tmpo.Session()Set the optional debug flag to see what is happening under the hood.
>>> s.debug = True
Adding a sensor id + token combination will cause all tmpo blocks to be donwloaded for this specific sensor when running the sync command. Feel free to experiment with the Flukso HQ electricity data by adding this specific sensor.
>>> s.add("fed676021dacaaf6a12a8dda7685be34", "b371402dc767cc83e41bc294b63f9586")
Synchronize and download tmpo blocks with the Flukso server. Optionally, one or multiple sensor id args can be specified to limit the syncing to those sensors.
>>> s.sync()
Convert the time series data contained in the tmpo blocks to a Pandas TimeSeries data structure.
>>> s.series("fed676021dacaaf6a12a8dda7685be34")
Provide optional head/tail arguments in Unix time to limit the time series length.
>>> s.series("fed676021dacaaf6a12a8dda7685be34", head=1411043328, tail=1411043583)
1411043332 3054225
1411043358 3054226
1411043383 3054227
1411043408 3054228
1411043434 3054229
1411043458 3054230
1411043481 3054231
1411043505 3054232
1411043528 3054233
1411043553 3054234
1411043577 3054235
dtype: float64