Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fmind/stase
A handful of statistical metrics to better understand and qualify malware datasets
https://github.com/fmind/stase
android datasets malware metrics python
Last synced: about 1 month ago
JSON representation
A handful of statistical metrics to better understand and qualify malware datasets
- Host: GitHub
- URL: https://github.com/fmind/stase
- Owner: fmind
- License: other
- Created: 2019-03-13T15:27:29.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-07-04T08:54:42.000Z (over 5 years ago)
- Last Synced: 2024-11-06T00:28:45.585Z (3 months ago)
- Topics: android, datasets, malware, metrics, python
- Language: Python
- Homepage:
- Size: 27.3 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
# What is STASE ?
STASE provides a set of metrics to describe a dataset of malware labels.
__Goal__:
* evaluate the properties of malware datasets
* identify potential bias in experimental studies
* analyze the decision and classification of antivirus products# Usage
__Input__: a dataset of labels formatted as a CSV or CSV.GZ file
* columns: antivirus products
* rows: malware files__Output__: metrics introduce in this research paper (soon to be released)
__Example__:
```
python3 stase.py sample.csv.gz output.json{
"equiponderance": 0.2422919148,
"equiponderance_idx":8.0,
"exclusivity":0.2626262626,
"recognition":0.1051423324,
"synchronicity":0.1677210336,
"genericity":0.5233236152,
"uniformity":0.2926562999,
"uniformity_idx":48.0,
"divergence":0.7568027211,
"consensuality":0.2227891156,
"resemblance":0.6406466991,
"labels":328.0,
"apps":99.0,
"avs":66.0,
}
```__Technical details__:
* implemented in Python 3 (dependencies in requirements.txt)
* use multiprocessing for performance
* shipped with [Ouroboros](https://github.com/freaxmind/ouroboros)# TODO
* Handle more input formats and options
Pull request accepted !