Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fmolivato/cwtlayerkeras
tensorflow 2.4 keras layer that compute cwt(continuous wavelet transformation) on signals
https://github.com/fmolivato/cwtlayerkeras
keras tensorflow2 wavelet-transform
Last synced: 3 months ago
JSON representation
tensorflow 2.4 keras layer that compute cwt(continuous wavelet transformation) on signals
- Host: GitHub
- URL: https://github.com/fmolivato/cwtlayerkeras
- Owner: fmolivato
- License: agpl-3.0
- Created: 2021-04-27T07:36:30.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2022-07-20T09:39:26.000Z (over 2 years ago)
- Last Synced: 2024-10-14T20:21:25.621Z (3 months ago)
- Topics: keras, tensorflow2, wavelet-transform
- Language: Python
- Homepage:
- Size: 72.3 KB
- Stars: 10
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# cwtLayerKeras
[![Generic badge](https://img.shields.io/badge/python-v3.6+-.svg)]() [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
This project main goal is to produce a simple way to compute **CWT** (Continuous Wavelet Transformation) scalogram on signals :satellite: with keras functional API.
![Screenshot](cwtLayerKeras/cwt_performance.png)
The image above shows the performance of the layer on a TitanX GPU
## Installation
pip install cwtLayerKeras## Usage
```python
from cwtLayerKeras import Cwt as cwtt# some code
def build_model():
input_data = layers.Input(shape=(x_val.shape[-1],))
cwt = cwtt(
sample_count=x_val.shape[-1],
scales_step=10,
min_scale = 4,
max_scale=224,
output_size=(224, 224),
depth_pad=2,
)
scalogram = cwt(input_data)
base_model = EfficientNetB0(include_top=False, weights=None)(scalogram)x = layers.GlobalAveragePooling2D()(base_model)
x = layers.BatchNormalization()(x)
x = layers.Dropout(0.3)(x)predictions = layers.Dense(OUTPUT_SIZE, activation="softmax")(x)
model = Model(inputs=input_data, outputs=predictions)
model.summary()
model.compile(
optimizer="adam",
loss="categorical_crossentropy",
metrics=["accuracy"],
)
return model
```## Parameters
Paramenter | Type | Description | Why
--- | --- | --- | ---
depth_pad | int | It allows to specify the number of padding channel that the layer need to add | some standard keras model (like efficientnet) need 3 channel depth to execute, instead of just the single one of the scalogram
max_scale|int|Highest wavelet's scale|
min_scale|int|Lowest wavelet's scale|
output_size|tuple|Size of the returned scalograms|
sample_count|int|# of Raman's shifts present in the tensor (in a tabular rapresentation,this number represent the amout of columns present in the table) |
scales_step|float|Change wavelet's scale by this range step|
trainable_kernels | bool | It make the wavelets that produce the scalogram trainable | interesting to see how/if the net optimizers change the wavelet kernel (research purpose)
wavelet|str|Wavelet kernel to use in the CWT. Now there are just "morl" (morlet), "mex_hat"/"rick" (mexican hat / ricker) |More insightful informations can be found in the code's docs :wink:
## Disclaimer::exclamation: This project was built for research purpose, so there could be some errors:exclamation:
Feel free to open issues on those.
Contributers are welcome :thumbsup: