Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/foolwood/dcfnet_pytorch

DCFNet: Discriminant Correlation Filters Network for Visual Tracking
https://github.com/foolwood/dcfnet_pytorch

cf end-to-end-learning fft pytorch tracking

Last synced: 4 days ago
JSON representation

DCFNet: Discriminant Correlation Filters Network for Visual Tracking

Awesome Lists containing this project

README

        

# DCFNet_pytorch([JCST](https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-023-3788-3))

[️‍πŸ”₯News️‍πŸ”₯] DCFNet is accepted in JCST. If you find [**DCFNet**](https://arxiv.org/pdf/1704.04057.pdf) useful in your research, please consider citing:

```
@Article{JCST-2309-13788,
title = {DCFNet: Discriminant Correlation Filters Network for Visual Tracking},
journal = {Journal of Computer Science and Technology},
year = {2023},
issn = {1000-9000(Print) /1860-4749(Online)},
doi = {10.1007/s11390-023-3788-3},
author = {Wei-Ming Hu and Qiang Wang and Jin Gao and Bing Li and Stephen Maybank}
}
```

This repository contains a Python *reimplementation* of the [**DCFNet**](https://arxiv.org/pdf/1704.04057.pdf).

### Why implementation in python (PyTorch)?

- Magical **Autograd** mechanism via PyTorch. Do not need to know the complicated BP.
- Fast Fourier Transforms (**FFT**) supported by PyTorch 0.4.0.
- Engineering demand.
- Fast test speed (**120 FPS** on GTX 1060) and **Multi-GPUs** training.

### Contents
1. [Requirements](#requirements)
2. [Test](#test)
3. [Train](#train)
4. [Citing DCFNet](#citing-dcfnet)

## Requirements

```shell
git clone --depth=1 https://github.com/foolwood/DCFNet_pytorch
```

Requirements for **PyTorch 0.4.0** and opencv-python

```shell
conda install pytorch torchvision -c pytorch
conda install -c menpo opencv
```

Training data (VID) and Test dataset (OTB).

## Test

```shell
cd DCFNet_pytorch/track
ln -s /path/to/your/OTB2015 ./dataset/OTB2015
ln -s ./dataset/OTB2015 ./dataset/OTB2013
cd dataset & python gen_otb2013.py
python DCFNet.py
```

## Train

1. Download training data. ([**ILSVRC2015 VID**](http://bvisionweb1.cs.unc.edu/ilsvrc2015/download-videos-3j16.php#vid))

```
./ILSVRC2015
β”œβ”€β”€ Annotations
β”‚Β Β  └── VIDβ”œβ”€β”€ a -> ./ILSVRC2015_VID_train_0000
β”‚ β”œβ”€β”€ b -> ./ILSVRC2015_VID_train_0001
β”‚ β”œβ”€β”€ c -> ./ILSVRC2015_VID_train_0002
β”‚ β”œβ”€β”€ d -> ./ILSVRC2015_VID_train_0003
β”‚ β”œβ”€β”€ e -> ./val
β”‚ β”œβ”€β”€ ILSVRC2015_VID_train_0000
β”‚ β”œβ”€β”€ ILSVRC2015_VID_train_0001
β”‚ β”œβ”€β”€ ILSVRC2015_VID_train_0002
β”‚ β”œβ”€β”€ ILSVRC2015_VID_train_0003
β”‚ └── val
β”œβ”€β”€ Data
β”‚Β Β  └── VID...........same as Annotations
└── ImageSets
└── VID
```

2. Prepare training data for `dataloader`.

```shell
cd DCFNet_pytorch/train/dataset
python parse_vid.py # save all vid info in a single json
python gen_snippet.py # generate snippets
python crop_image.py # crop and generate a json for dataloader
```

3. Training. (on multiple ***GPUs*** :zap: :zap: :zap: :zap:)

```
cd DCFNet_pytorch/train/
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_DCFNet.py
```

## Fine-tune hyper-parameter

1. After training, you can simple test the model with default parameter.

```shell
cd DCFNet_pytorch/track/
python DCFNet --model ../train/work/crop_125_2.0/checkpoint.pth.tar
```

2. Search a better hyper-parameter.

```shell
CUDA_VISIBLE_DEVICES=0 python tune_otb.py # run on parallel to speed up searching
python eval_otb.py OTB2013 * 0 10000
```

## Citing DCFNet

If you find [**DCFNet**](https://arxiv.org/pdf/1704.04057.pdf) useful in your research, please consider citing:

```
@article{wang2017dcfnet,
title={DCFNet: Discriminant Correlation Filters Network for Visual Tracking},
author={Wang, Qiang and Gao, Jin and Xing, Junliang and Zhang, Mengdan and Hu, Weiming},
journal={arXiv preprint arXiv:1704.04057},
year={2017}
}
```