Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/foolwood/pytorch-slimming

Learning Efficient Convolutional Networks through Network Slimming, In ICCV 2017.
https://github.com/foolwood/pytorch-slimming

deep-learning fast-inference l1-regularization pytorch weight-pruning

Last synced: 19 days ago
JSON representation

Learning Efficient Convolutional Networks through Network Slimming, In ICCV 2017.

Awesome Lists containing this project

README

        

# pytorch-slimming

This is a **[PyTorch](http://pytorch.org/)** _re_-implementation of algorithm presented in "[Learning Efficient Convolutional Networks Through Network Slimming](http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html) (ICCV2017)." . The official source code is based on Torch. For more info, visit the author's [webpage](https://github.com/liuzhuang13/slimming)!.

| CIFAR10-VGG16BN | Baseline | Trained with Sparsity (1e-4) | Pruned (0.7 Pruned) | Fine-tuned (40epochs) |
| :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: |
| Top1 Accuracy (%) | 93.62 | 93.77 | 10.00 | 93.56 |
| Parameters | 20.04M | 20.04M | 2.42M | 2.42M |

| Pruned Ratio | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :----------------------------------: | :-----------: | :----------: | :-----------: | :----------: | :----------: | :----------: | :----------: | :----------: |
| Top1 Accuracy (%) without Fine-tuned | 93.77 | 93.72 | 93.76 | 93.75 | 93.75 | 93.40 | 37.83 | 10.00 |
| Parameters(M) / macc(M) | 20.04/ 398.44 | 15.9/ 349.22 | 12.28/ 307.78 | 9.12/ 272.94 | 6.74/ 247.86 | 4.62/ 231.86 | 3.14/ 222.17 | 2.42/ 210.84 |

| Pruned Ratio | architecture |
| :----------: | :--------------------------------------: |
| 0 | [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512] |
| 0.1 | [60, 64, 'M', 128, 128, 'M', 256, 255, 253, 245, 'M', 436, 417, 425, 462, 'M', 463, 465, 472, 424] |
| 0.2 | [58, 64, 'M', 128, 128, 'M', 256, 255, 250, 233, 'M', 360, 336, 329, 398, 'M', 420, 412, 435, 341] |
| 0.3 | [56, 64, 'M', 128, 128, 'M', 256, 254, 249, 227, 'M', 284, 239, 244, 351, 'M', 369, 364, 384, 255] |
| 0.4 | [52, 64, 'M', 128, 128, 'M', 256, 254, 247, 218, 'M', 218, 162, 166, 294, 'M', 317, 315, 318, 165] |
| 0.5 | [52, 64, 'M', 128, 128, 'M', 256, 254, 245, 214, 'M', 179, 117, 116, 229, 'M', 228, 220, 210, 111] |
| 0.6 | [51, 64, 'M', 128, 128, 'M', 256, 254, 245, 213, 'M', 165, 85, 92, 153, 'M', 83, 86, 87, 111] |
| 0.7 | [49, 64, 'M', 128, 128, 'M', 256, 254, 234, 198, 'M', 114, 41, 24, 11, 'M', 14, 13, 19, 104] |

## Baseline

```shell
python main.py
```

## Trained with Sparsity

```shell
python main.py -sr --s 0.0001
```

## Pruned

```shell
python prune.py --model model_best.pth.tar --save pruned.pth.tar --percent 0.7
```

## Fine-tuned

```shell
python main.py -refine pruned.pth.tar --epochs 40
```

## Reference

```
@InProceedings{Liu_2017_ICCV,
author = {Liu, Zhuang and Li, Jianguo and Shen, Zhiqiang and Huang, Gao and Yan, Shoumeng and Zhang, Changshui},
title = {Learning Efficient Convolutional Networks Through Network Slimming},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}
```