Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/foolwood/siammask

[CVPR2019] Fast Online Object Tracking and Segmentation: A Unifying Approach
https://github.com/foolwood/siammask

computer-vision cvpr2019 deep-learning object-tracking pytorch read-time video-object-segmentation visual-tracking

Last synced: 3 days ago
JSON representation

[CVPR2019] Fast Online Object Tracking and Segmentation: A Unifying Approach

Awesome Lists containing this project

README

        

# SiamMask

**NEW:** now including code for both training and inference!

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/fast-online-object-tracking-and-segmentation/visual-object-tracking-vot201718)](https://paperswithcode.com/sota/visual-object-tracking-vot201718?p=fast-online-object-tracking-and-segmentation)

This is the official implementation with *training* code for SiamMask (CVPR2019). For technical details, please refer to:

**Fast Online Object Tracking and Segmentation: A Unifying Approach**

[Qiang Wang](http://www.robots.ox.ac.uk/~qwang/)\*, [Li Zhang](http://www.robots.ox.ac.uk/~lz)\*, [Luca Bertinetto](http://www.robots.ox.ac.uk/~luca)\*, [Weiming Hu](https://scholar.google.com/citations?user=Wl4tl4QAAAAJ&hl=en), [Philip H.S. Torr](https://scholar.google.it/citations?user=kPxa2w0AAAAJ&hl=en&oi=ao) (\* denotes equal contribution)

**CVPR 2019**

**[[Paper](https://arxiv.org/abs/1812.05050)] [[Video](https://youtu.be/I_iOVrcpEBw)] [[Project Page](http://www.robots.ox.ac.uk/~qwang/SiamMask)]**



### Bibtex
If you find this code useful, please consider citing:

```
@inproceedings{wang2019fast,
title={Fast online object tracking and segmentation: A unifying approach},
author={Wang, Qiang and Zhang, Li and Bertinetto, Luca and Hu, Weiming and Torr, Philip HS},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
year={2019}
}
```

## Contents
1. [Environment Setup](#environment-setup)
2. [Demo](#demo)
3. [Testing Models](#testing-models)
4. [Training Models](#training-models)

## Environment setup
This code has been tested on Ubuntu 16.04, Python 3.6, Pytorch 0.4.1, CUDA 9.2, RTX 2080 GPUs

- Clone the repository
```
git clone https://github.com/foolwood/SiamMask.git && cd SiamMask
export SiamMask=$PWD
```
- Setup python environment
```
conda create -n siammask python=3.6
source activate siammask
pip install -r requirements.txt
bash make.sh
```
- Add the project to your PYTHONPATH
```
export PYTHONPATH=$PWD:$PYTHONPATH
```

## Demo
- [Setup](#environment-setup) your environment
- Download the SiamMask model
```shell
cd $SiamMask/experiments/siammask_sharp
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_VOT.pth
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_DAVIS.pth
```
- Run `demo.py`

```shell
cd $SiamMask/experiments/siammask_sharp
export PYTHONPATH=$PWD:$PYTHONPATH
python ../../tools/demo.py --resume SiamMask_DAVIS.pth --config config_davis.json
```



## Testing
- [Setup](#environment-setup) your environment
- Download test data
```shell
cd $SiamMask/data
sudo apt-get install jq
bash get_test_data.sh
```
- Download pretrained models
```shell
cd $SiamMask/experiments/siammask_sharp
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_VOT.pth
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_VOT_LD.pth
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_DAVIS.pth
```
- Evaluate performance on [VOT](http://www.votchallenge.net/)
```shell
bash test_mask_refine.sh config_vot.json SiamMask_VOT.pth VOT2016 0
bash test_mask_refine.sh config_vot.json SiamMask_VOT.pth VOT2018 0
bash test_mask_refine.sh config_vot.json SiamMask_VOT.pth VOT2019 0
bash test_mask_refine.sh config_vot18.json SiamMask_VOT_LD.pth VOT2016 0
bash test_mask_refine.sh config_vot18.json SiamMask_VOT_LD.pth VOT2018 0
python ../../tools/eval.py --dataset VOT2016 --tracker_prefix C --result_dir ./test/VOT2016
python ../../tools/eval.py --dataset VOT2018 --tracker_prefix C --result_dir ./test/VOT2018
python ../../tools/eval.py --dataset VOT2019 --tracker_prefix C --result_dir ./test/VOT2019
```
- Evaluate performance on [DAVIS](https://davischallenge.org/) (less than 50s)
```shell
bash test_mask_refine.sh config_davis.json SiamMask_DAVIS.pth DAVIS2016 0
bash test_mask_refine.sh config_davis.json SiamMask_DAVIS.pth DAVIS2017 0
```
- Evaluate performance on [Youtube-VOS](https://youtube-vos.org/) (need download data from [website](https://youtube-vos.org/dataset/download))
```shell
bash test_mask_refine.sh config_davis.json SiamMask_DAVIS.pth ytb_vos 0
```

### Results
These are the reproduction results from this repository. All results can be downloaded from our [project page](http://www.robots.ox.ac.uk/~qwang/SiamMask/).

| Tracker | VOT2016EAO / A / R | VOT2018EAO / A / R | DAVIS2016J / F | DAVIS2017J / F | Youtube-VOSJ_s / J_u / F_s / F_u | Speed |
|:----------------------------------------------------------------------:|:--------------------------------------------:|:--------------------------------------------:|:--------------------------------:|:--------------------------------:|:--------------------------------------------------------:|:------------------------:|
| [SiamMask-box](http://www.robots.ox.ac.uk/~qwang/SiamMask/) | 0.412/0.623/0.233 | 0.363/0.584/0.300 | - / - | - / - | - / - / - / - | **77** FPS |
| [SiamMask](http://www.robots.ox.ac.uk/~qwang/SiamMask/) | **0.433**/**0.639**/**0.214** | **0.380**/**0.609**/**0.276** | **0.713**/**0.674** | **0.543**/**0.585** | **0.602**/**0.451**/**0.582**/**0.477** | 56 FPS |
| [SiamMask-LD](http://www.robots.ox.ac.uk/~qwang/SiamMask/) | **0.455**/**0.634**/**0.219** | **0.423**/**0.615**/**0.248** | - / - | - / - | - / - / - / - | 56 FPS |

**Note:**
- Speed are tested on a NVIDIA RTX 2080.
- `-box` reports an axis-aligned bounding box from the box branch.
- `-LD` means training with large dataset (ytb-bb+ytb-vos+vid+coco+det).

## Training

### Training Data
- Download the [Youtube-VOS](https://youtube-vos.org/dataset/download/),
[COCO](http://cocodataset.org/#download),
[ImageNet-DET](http://image-net.org/challenges/LSVRC/2015/),
and [ImageNet-VID](http://image-net.org/challenges/LSVRC/2015/).
- Preprocess each datasets according the [readme](data/coco/readme.md) files.

### Download the pre-trained model (174 MB)
(This model was trained on the ImageNet-1k Dataset)
```
cd $SiamMask/experiments
wget http://www.robots.ox.ac.uk/~qwang/resnet.model
ls | grep siam | xargs -I {} cp resnet.model {}
```

### Training SiamMask base model
- [Setup](#environment-setup) your environment
- From the experiment directory, run
```
cd $SiamMask/experiments/siammask_base/
bash run.sh
```
- Training takes about 10 hours in our 4 Tesla V100 GPUs.
- If you experience out-of-memory errors, you can reduce the batch size in `run.sh`.
- You can view progress on Tensorboard (logs are at /logs/)
- After training, you can test checkpoints on VOT dataset.
```shell
bash test_all.sh -s 1 -e 20 -d VOT2018 -g 4 # test all snapshots with 4 GPUs
```
- Select best model for hyperparametric search.
```shell
#bash test_all.sh -m [best_test_model] -d VOT2018 -n [thread_num] -g [gpu_num] # 8 threads with 4 GPUS
bash test_all.sh -m snapshot/checkpoint_e12.pth -d VOT2018 -n 8 -g 4 # 8 threads with 4 GPUS
```

### Training SiamMask model with the Refine module
- [Setup](#environment-setup) your environment
- In the experiment file, train with the best SiamMask base model
```
cd $SiamMask/experiments/siammask_sharp
bash run.sh
bash run.sh checkpoint_e12.pth
```
- You can view progress on Tensorboard (logs are at /logs/)
- After training, you can test checkpoints on VOT dataset
```shell
bash test_all.sh -s 1 -e 20 -d VOT2018 -g 4
```

### Training SiamRPN++ model (*unofficial*)
- [Setup](#environment-setup) your environment
- From the experiment directory, run
```
cd $SiamMask/experiments/siamrpn_resnet
bash run.sh
```
- You can view progress on Tensorboard (logs are at /logs/)
- After training, you can test checkpoints on VOT dataset
```shell
bash test_all.sh -h
bash test_all.sh -s 1 -e 20 -d VOT2018 -g 4
```

## License
Licensed under an MIT license.