An open API service indexing awesome lists of open source software.

https://github.com/forked-from-1kasper/anders

Anders: Cubical Type Checker
https://github.com/forked-from-1kasper/anders

ctt cubical-type-theory dependent-type-theory dependent-types homotopy-type-theory hott mltt proof-assistant theorem-prover type-checker type-system

Last synced: 29 days ago
JSON representation

Anders: Cubical Type Checker

Awesome Lists containing this project

README

        

Anders
======

```OCaml
type exp =
| EPre of Z.t | EKan of Z.t (* cosmos *)
| EVar of ident | EHole (* variables *)
| EPi of exp * (ident * exp) | ELam of exp * (ident * exp) | EApp of exp * exp (* pi *)
| ESig of exp * (ident * exp) | EPair of tag * exp * exp (* sigma *)
| EFst of exp | ESnd of exp | EField of exp * string (* simga elims/records *)
| EId of exp | ERef of exp | EJ of exp (* strict equality *)
| EPathP of exp | EPLam of exp | EAppFormula of exp * exp (* path equality *)
| EI | EDir of dir | EAnd of exp * exp | EOr of exp * exp | ENeg of exp (* CCHM interval *)
| ETransp of exp * exp | EHComp of exp * exp * exp * exp (* Kan operations *)
| EPartial of exp | EPartialP of exp * exp | ESystem of exp System.t (* partial functions *)
| ESub of exp * exp * exp | EInc of exp * exp | EOuc of exp (* cubical subtypes *)
| EGlue of exp | EGlueElem of exp * exp * exp | EUnglue of exp * exp * exp (* glueing *)
| EEmpty | EIndEmpty of exp (* 𝟎 *)
| EUnit | EStar | EIndUnit of exp (* 𝟏 *)
| EBool | EFalse | ETrue | EIndBool of exp (* 𝟐 *)
| EW of exp * (ident * exp) | ESup of exp * exp | EIndW of exp * exp * exp (* W *)
| EIm of exp | EInf of exp | EIndIm of exp * exp | EJoin of exp (* Infinitesimal Modality *)
```

Anders is a HoTT proof assistant based on [CCHM](https://arxiv.org/pdf/1611.02108.pdf)
in flavour of [Cubical Agda](https://agda.readthedocs.io/en/v2.6.2.1/language/cubical.html)
plus strict equality for 2LTT and ℑ modality for synthetic differential geometry.

Features
--------

* 𝟎, 𝟏, 𝟐, W.
* Pretypes & strict equality.
* Generalized Transport and Homogeneous Composition as primitive Kan operations.
* Cubical subtypes.
* Glue types.
* Coequalizer.
* ℑ modality.
* UTF-8 support including universe levels (i.e. `U₁₂₃`).
* Lean syntax for ΠΣW.
* Poor man’s records as Σ with named accessors to telescope variables.
* 1D syntax with top-level declarations.

Setup
-----

```shell
$ make
$ dune exec anders help
```

Samples
-------

You can find some examples in [`library/`](https://github.com/forked-from-1kasper/anders/tree/master/library).

```Lean
def invâ€Č (A : U) (a b : A) (p : Path A a b) : Path A b a :=
hcomp A (∂ i) (λ (j : I), [(i = 0) → p @ j, (i = 1) → a]) a

def kan (A : U) (a b c d : A) (p : Path A a c) (q : Path A b d) (r : Path A a b) : Path A c d :=
hcomp A (∂ i) (λ (j : I), [(i = 0) → p @ j, (i = 1) → q @ j]) (r @ i)

def comp (A : I → U) (r : I) (u : Π (i : I), Partial (A i) r) (u₀ : (A 0)[r ↩ u 0]) : A 1 :=
hcomp (A 1) r (λ (i : I), [(r = 1) → transp ( A (i √ j)) i (u i 1=1)]) (transp ( A i) 0 (ouc u₀))

def ghcomp (A : U) (r : I) (u : I → Partial A r) (u₀ : A[r ↩ u 0]) : A :=
hcomp A (∂ r) (λ (j : I), [(r = 1) → u j 1=1, (r = 0) → ouc u₀]) (ouc u₀)
```

```shell
$ anders check library/everything.anders
```

## Related publications

### MLTT

Type Checker is based on classical MLTT-80 with 0, 1, 2 and W-types.

* Intuitionistic Type Theory [Martin-Löf]

### CCHM

* CTT: a constructive interpretation of the univalence axiom [Cohen, Coquand, Huber, Mörtberg]
* On Higher Inductive Types in Cubical Type Theory [Coquand, Huber, Mörtberg]
* Canonicity for Cubical Type Theory [Huber]
* Canonicity and homotopy canonicity for cubical type theory [Coquand, Huber, Sattler]
* Cubical Synthetic Homotopy Theory [Mörtberg, Pujet]
* Unifying Cubical Models of Univalent Type Theory [Cavallo, Mörtberg, Swan]
* Cubical Agda: A Dependently Typed PL with Univalence and HITs [Vezzosi, Mörtberg, Abel]
* A Cubical Type Theory for Higher Inductive Types [Huber]
* Gluing for type theory [Kaposi, Huber, Sattler]
* Cubical Methods in HoTT/UF [Mörtberg]

### HTS

* A simple type system with two identity types [Voevodsky]
* Two-level type theory and applications [Annenkov, Capriotti, Kraus, Sattler]
* Syntax for two-level type theory [Bonacina, Ahrens]

### Modalities

Infinitesimal Modality was added for direct support of Synthetic Differential Geometry.

* Differential cohomology in a cohesive ∞-topos [Schreiber]
* Cartan Geometry in Modal Homotopy Type Theory [Cherubini]
* Differential Cohesive Type Theory [Gross, Licata, New, Paykin, Riley, Shulman, Cherubini]
* Brouwer's fixed-point theorem in real-cohesive homotopy type theory [Shulman]

Acknowledgements
----------------

* Univalent People

Authors
-------

* @siegment
* @tonpaguru