Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/francois-rozet/torchist
NumPy-style histograms in PyTorch
https://github.com/francois-rozet/torchist
histogram numpy pytorch
Last synced: about 2 months ago
JSON representation
NumPy-style histograms in PyTorch
- Host: GitHub
- URL: https://github.com/francois-rozet/torchist
- Owner: francois-rozet
- License: mit
- Created: 2021-02-18T15:52:15.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2024-04-03T14:48:11.000Z (9 months ago)
- Last Synced: 2024-10-14T06:41:04.405Z (2 months ago)
- Topics: histogram, numpy, pytorch
- Language: Python
- Homepage: https://pypi.org/project/torchist
- Size: 29.3 KB
- Stars: 51
- Watchers: 5
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# NumPy-style histograms in PyTorch
The `torchist` package implements NumPy's [`histogram`](https://numpy.org/doc/stable/reference/generated/numpy.histogram.html) and [`histogramdd`](https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html) functions in PyTorch with CUDA support. The package also features implementations of [`ravel_multi_index`](https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html), [`unravel_index`](https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html) and some useful functionals like `entropy` or `kl_divergence`.
## Installation
The `torchist` package is available on [PyPI](https://pypi.org/project/torchist), which means it is installable with `pip`.
```
pip install torchist
```Alternatively, if you need the latest features, you can install it from the repository.
```
pip install git+https://github.com/francois-rozet/torchist
```## Getting Started
```python
import torch
import torchistx = torch.rand(100, 3).cuda()
hist = torchist.histogramdd(x, bins=10, low=0.0, upp=1.0)
print(hist.shape) # (10, 10, 10)
```## Benchmark
The implementations of `torchist` are on par or faster than those of `numpy` on CPU and benefit greately from CUDA capabilities.
```console
$ python torchist/__init__.py
CPU
---
np.histogram : 1.2559 s
np.histogramdd : 20.7816 s
np.histogram (non-uniform) : 5.4878 s
np.histogramdd (non-uniform) : 17.3757 s
torchist.histogram : 1.3975 s
torchist.histogramdd : 9.6160 s
torchist.histogram (non-uniform) : 5.0883 s
torchist.histogramdd (non-uniform) : 17.2743 sCUDA
----
torchist.histogram : 0.1363 s
torchist.histogramdd : 0.3754 s
torchist.histogram (non-uniform) : 0.1355 s
torchist.histogramdd (non-uniform) : 0.5137 s
```