Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/freedomintelligence/textclassificationbenchmark

A Benchmark of Text Classification in PyTorch
https://github.com/freedomintelligence/textclassificationbenchmark

attention-is-all-you-need benchmark capusle cnn cnn-classification crnn lstm lstm-sentiment-analysis pytorch quantum rcnn text-classification

Last synced: 4 days ago
JSON representation

A Benchmark of Text Classification in PyTorch

Awesome Lists containing this project

README

        

# Text Classification Benchmark
A Benchmark of Text Classification in PyTorch

## Motivation

We are trying to build a Benchmark for Text Classification including

>Many Text Classification **DataSet**, including Sentiment/Topic Classfication, popular language(e.g. English and Chinese). Meanwhile, a basic word embedding is provided.

>Implment many popular and state-of-art **Models**, especially in deep neural network.

## Have done
We have done some dataset and models
### Dataset done
- IMDB
- SST
- Trec

### Models done
- FastText
- BasicCNN (KimCNN,MultiLayerCNN, Multi-perspective CNN)
- InceptionCNN
- LSTM (BILSTM, StackLSTM)
- LSTM with Attention (Self Attention / Quantum Attention)
- Hybrids between CNN and RNN (RCNN, C-LSTM)
- Transformer - Attention is all you need
- ConS2S
- Capsule
- Quantum-inspired NN

## Libary

You should have install [these librarys](docs/windows_torch_en.md)


python3
torch
torchtext (optional)

## Dataset
Dataset will be automatically configured in current path, or download manually your data in [Dataset](docs/data_config_en.md), step-by step.

including


Glove embeding
Sentiment classfication dataset IMDB

## usage

Run in default setting

python main.py

CNN

python main.py --model cnn

LSTM

python main.py --model lstm

## Road Map
- [X] Data preprossing framework
- [X] Models modules
- [ ] Loss, Estimator and hyper-paramter tuning.
- [ ] Test modules
- [ ] More Dataset
- [ ] More models

## Organisation of the repository
The core of this repository is models and dataset.

* ```dataloader/```: loading all dataset such as ```IMDB```, ```SST```

* ```models/```: creating all models such as ```FastText```, ```LSTM```,```CNN```,```Capsule```,```QuantumCNN``` ,```Multi-Head Attention```

* ```opts.py```: Parameter and config info.

* ```utils.py```: tools.

* ```dataHelper```: data helper

## Contributor
- [@Allenzhai](https://github.com/zhaizheng)
- [@JaredWei](https://github.com/jacobwei)
- [@AlexMeng](https://github.com/EdwardLorenz)
- [@Lilianwang](https://github.com/WangLilian)
- [@ZhanSu](https://github.com/shuishen112)
- [@Wabywang](https://github.com/Wabyking)

Welcome your issues and contribution!!!