Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/freelancer/pavlova

A python deserialisation library built on top of dataclasses
https://github.com/freelancer/pavlova

dataclasses deserialization flask python python37

Last synced: 4 months ago
JSON representation

A python deserialisation library built on top of dataclasses

Awesome Lists containing this project

README

        

*****************************************************
pavlova: simplified deserialization using dataclasses
*****************************************************

**pavlova** is a library that assists in mapping an unknown input into a
dataclass.

.. code-block:: python

from datetime import datetime
from dataclasses import dataclass

from pavlova import Pavlova

@dataclass
class Input:
id: int
name: str
date: datetime

Pavlova().from_mapping({
'id': 10,
'name': 100
'date': '2018-08-10',
}, Input)
# Input(id=10, name='100', date=datetime.datetime(2018, 8, 10, 0, 0))

Pavlova was born out of frustration with the lack of typing support for
existing deserialization libraries. With the introduction of dataclasses in
Python 3.7, they seemed like the perfect use for defining a deserialization
schema.

Supported functionality
#######################

Parsing of booleans, datetimes, floats, ints, strings, decimals, dictionaries,
enums, lists are currently supported.

There are more parsers to come, however to implement your own custom parser,
simply implement `PavlovaParser` in `pavlova.parsers`, and register it with the
Pavlova object with the `register_parser` method.

Installation
############

.. code-block:: shell

pip install pavlova

Usage with Flask
################

.. code-block:: python

from dataclasses import dataclass, asdict

from flask import Flask, jsonify
from pavlova.flask import FlaskPavlova

pavlova = FlaskPavlova()
app = Flask(__name__)

@dataclass
class SampleInput:
id: int
name: str

@app.route('/post', methods=['POST'])
@pavlova.use(SampleInput)
def data(data: SampleInput):
data.id = data.id * len(data.name)
return jsonify(asdict(data))

app.run()

Adding Custom Types
###################

There are a couple of different ways to implement new types for parsing in
pavlova. In general, the process is to add a parser a specific type. For
validation you should raise a TypeError or ValueError.

The first one, is creating a new type that extends an existing base type. Here
is an example on how to implement an Email type, which is a string but performs
validation.

.. code-block:: python

from pavlova import Pavlova
from pavlova.parsers import GenericParser

class Email(str):
def __new__(cls, input_value: typing.Any) -> str:
if isinstance(input_value, str):
if '@' in input_value:
return str(input_value)
raise ValueError()
raise TypeError()

pavlova = Pavlova()
pavlova.register_parser(Email, GenericParser(pavlova, Email))

Another way, is to implement your own pavlova parser, rather than using your
the built in `GenericParser` parser.

.. code-block:: python

import datetime
from typing import Any, Tuple

import dateparser
from pavlova import Pavlova
from pavlova.parsers import PavlovaParser

class DatetimeParser(PavlovaParser[datetime.datetime]):
"Parses a datetime"

def parse_input(self,
input_value: Any,
field_type: Type,
path: Tuple[str, ...]) -> datetime.datetime:
return dateparser.parse(input_value)

pavlova = Pavlova()
pavlova.register_parser(datetime.DateTime, DatetimeParser(pavlova))

Requirements
############

Pavlova is only supported on Python 3.6 and higher. With Python 3.6, it will
install the `dataclasses `__ module.
With Python 3.7 and higher, it will use the built-in dataclasses module.

License
~~~~~~~

GNU LGPLv3. Please see `LICENSE `__ and
`COPYING.LESSER `__.