Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/frgfm/holocron

PyTorch implementations of recent Computer Vision tricks (ReXNet, RepVGG, Unet3p, YOLOv4, CIoU loss, AdaBelief, PolyLoss, MobileOne). Other additions: AdEMAMix
https://github.com/frgfm/holocron

ademamix computer-vision cspdarknet53 darknet deep-learning object-detection pytorch resnet rexnet tridentnet unet-image-segmentation yolo yolov4

Last synced: about 1 month ago
JSON representation

PyTorch implementations of recent Computer Vision tricks (ReXNet, RepVGG, Unet3p, YOLOv4, CIoU loss, AdaBelief, PolyLoss, MobileOne). Other additions: AdEMAMix

Awesome Lists containing this project

README

        





CI Status


ruff


ruff



Test coverage percentage




PyPi Status


Conda Version

pyversions

License




Huggingface Spaces


Open in Colab




Documentation Status

Implementations of recent Deep Learning tricks in Computer Vision, easily paired up with your favorite framework and model zoo.

> **Holocrons** were information-storage [datacron](https://starwars.fandom.com/wiki/Datacron) devices used by both the [Jedi Order](https://starwars.fandom.com/wiki/Jedi_Order) and the [Sith](https://starwars.fandom.com/wiki/Sith) that contained ancient lessons or valuable information in [holographic](https://starwars.fandom.com/wiki/Hologram) form.

*Source: Wookieepedia*

## Quick Tour
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/frgfm/notebooks/blob/main/holocron/quicktour.ipynb)

This project was created for quality implementations, increased developer flexibility and maximum compatibility with the PyTorch ecosystem. For instance, here is a short snippet to showcase how Holocron models are meant to be used:

```python
from PIL import Image
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
from torchvision.transforms.functional import InterpolationMode
from holocron.models.classification import repvgg_a0

# Load your model
model = repvgg_a0(pretrained=True).eval()

# Read your image
img = Image.open(path_to_an_image).convert("RGB")

# Preprocessing
config = model.default_cfg
transform = Compose([
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
PILToTensor(),
ConvertImageDtype(torch.float32),
Normalize(config['mean'], config['std'])
])

input_tensor = transform(img).unsqueeze(0)

# Inference
with torch.inference_mode():
output = model(input_tensor)
print(config['classes'][output.squeeze(0).argmax().item()], output.squeeze(0).softmax(dim=0).max())
```

## Installation

### Prerequisites

Python 3.8 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.

### Latest stable release

You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:

```shell
pip install pylocron
```

or using [conda](https://anaconda.org/frgfm/pylocron):

```shell
conda install -c frgfm pylocron
```

### Developer mode

Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:

```shell
git clone https://github.com/frgfm/Holocron.git
pip install -e Holocron/.
```

## Paper references

### PyTorch layers for every need
- Activation: [HardMish](https://github.com/digantamisra98/H-Mish), [NLReLU](https://arxiv.org/abs/1908.03682), [FReLU](https://arxiv.org/abs/2007.11824)
- Loss: [Focal Loss](https://arxiv.org/abs/1708.02002), MultiLabelCrossEntropy, [MixupLoss](https://arxiv.org/pdf/1710.09412.pdf), [ClassBalancedWrapper](https://arxiv.org/abs/1901.05555), [ComplementCrossEntropy](https://arxiv.org/abs/2009.02189), [MutualChannelLoss](https://arxiv.org/abs/2002.04264), [DiceLoss](https://arxiv.org/abs/1606.04797), [PolyLoss](https://arxiv.org/abs/2204.12511)
- Convolutions: [NormConv2d](https://arxiv.org/pdf/2005.05274v2.pdf), [Add2d](https://arxiv.org/pdf/1912.13200.pdf), [SlimConv2d](https://arxiv.org/pdf/2003.07469.pdf), [PyConv2d](https://arxiv.org/abs/2006.11538), [Involution](https://arxiv.org/abs/2103.06255)
- Regularization: [DropBlock](https://arxiv.org/abs/1810.12890)
- Pooling: [BlurPool2d](https://arxiv.org/abs/1904.11486), [SPP](https://arxiv.org/abs/1406.4729), [ZPool](https://arxiv.org/abs/2010.03045)
- Attention: [SAM](https://arxiv.org/abs/1807.06521), [LambdaLayer](https://openreview.net/forum?id=xTJEN-ggl1b), [TripletAttention](https://arxiv.org/abs/2010.03045)

### Models for vision tasks
- Image Classification: [Res2Net](https://arxiv.org/abs/1904.01169) (based on the great [implementation](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/res2net.py) from Ross Wightman), [Darknet-24](https://pjreddie.com/media/files/papers/yolo_1.pdf), [Darknet-19](https://pjreddie.com/media/files/papers/YOLO9000.pdf), [Darknet-53](https://pjreddie.com/media/files/papers/YOLOv3.pdf), [CSPDarknet-53](), [ResNet](https://arxiv.org/abs/1512.03385), [ResNeXt](https://arxiv.org/abs/1611.05431), [TridentNet](https://arxiv.org/abs/1901.01892), [PyConvResNet](https://arxiv.org/abs/2006.11538), [ReXNet](https://arxiv.org/abs/2007.00992), [SKNet](https://arxiv.org/abs/1903.06586), [RepVGG](https://arxiv.org/abs/2101.03697), [ConvNeXt](https://arxiv.org/abs/2201.03545), [MobileOne](https://arxiv.org/abs/2206.04040).
- Object Detection: [YOLOv1](https://pjreddie.com/media/files/papers/yolo_1.pdf), [YOLOv2](https://pjreddie.com/media/files/papers/YOLO9000.pdf), [YOLOv4](https://arxiv.org/abs/2004.10934)
- Semantic Segmentation: [U-Net](https://arxiv.org/abs/1505.04597), [UNet++](https://arxiv.org/abs/1807.10165), [UNet3+](https://arxiv.org/abs/2004.08790)

### Vision-related operations
- boxes: [Distance-IoU & Complete-IoU losses](https://arxiv.org/abs/1911.08287)

### Trying something else than Adam
- Optimizer: [LARS](https://arxiv.org/abs/1708.03888), [Lamb](https://arxiv.org/abs/1904.00962), [TAdam](https://arxiv.org/abs/2003.00179), [AdamP](https://arxiv.org/abs/2006.08217), [AdaBelief](https://arxiv.org/abs/2010.07468), [Adan](https://arxiv.org/abs/2208.06677), and customized versions (RaLars), [AdEMAMix](https://arxiv.org/abs/2409.03137)
- Optimizer wrapper: [Lookahead](https://arxiv.org/abs/1907.08610), Scout (experimental)

## More goodies

### Documentation

The full package documentation is available [here](https://frgfm.github.io/holocron/) for detailed specifications.

### Demo app

The project includes a minimal demo app using [Gradio](https://gradio.app/)

![demo_app](https://github.com/frgfm/Holocron/releases/download/v0.1.3/holocron_gradio.png)

You can check the live demo, hosted on :hugs: [HuggingFace Spaces](https://huggingface.co/spaces) :hugs: over here :point_down:
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/frgfm/Holocron)

### Reference scripts

Reference scripts are provided to train your models using holocron on famous public datasets. Those scripts currently support the following vision tasks:
- [Image classification](references/classification)
- [Object detection](references/detection)
- [Semantic segmentation](references/segmentation)

### Latency benchmark

You crave for SOTA performances, but you don't know whether it fits your needs in terms of latency?

In the table below, you will find a latency benchmark for all supported models:

| Arch | GPU mean (std) | CPU mean (std) |
| ------------------------------------------------------------ | ----------------- | ------------------ |
| [repvgg_a0](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_a0)* | 3.14ms (0.87ms) | 23.28ms (1.21ms) |
| [repvgg_a1](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_a1)* | 4.13ms (1.00ms) | 29.61ms (0.46ms) |
| [repvgg_a2](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_a2)* | 7.35ms (1.11ms) | 46.87ms (1.27ms) |
| [repvgg_b0](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_b0)* | 4.23ms (1.04ms) | 33.16ms (0.58ms) |
| [repvgg_b1](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_b1)* | 12.48ms (0.96ms) | 100.66ms (1.46ms) |
| [repvgg_b2](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_b2)* | 20.12ms (0.31ms) | 155.90ms (1.59ms) |
| [repvgg_b3](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.repvgg_b3)* | 24.94ms (1.70ms) | 224.68ms (14.27ms) |
| [rexnet1_0x](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.rexnet1_0x) | 6.01ms (0.26ms) | 13.66ms (0.21ms) |
| [rexnet1_3x](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.rexnet1_3x) | 6.43ms (0.10ms) | 19.13ms (2.05ms) |
| [rexnet1_5x](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.rexnet1_5x) | 6.46ms (0.28ms) | 21.06ms (0.24ms) |
| [rexnet2_0x](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.rexnet2_0x) | 6.75ms (0.21ms) | 31.77ms (3.28ms) |
| [rexnet2_2x](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.rexnet2_2x) | 6.92ms (0.51ms) | 33.61ms (0.60ms) |
| [sknet50](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.sknet50) | 11.40ms (0.38ms) | 54.03ms (3.35ms) |
| [sknet101](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.sknet101) | 23.55 ms (1.11ms) | 94.89ms (5.61ms) |
| [sknet152](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.sknet152) | 69.81ms (0.60ms) | 253.07ms (3.33ms) |
| [tridentnet50](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.tridentnet50) | 16.62ms (1.21ms) | 142.85ms (5.33ms) |
| [res2net50_26w_4s](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.res2net50_26w_4s) | 9.25ms (0.22ms) | 41.84ms (0.80ms) |
| [resnet50d](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.resnet50d) | 36.97ms (3.58ms) | 36.97ms (3.58ms) |
| [pyconv_resnet50](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.pyconv_resnet50) | 20.03ms (0.28ms) | 178.85ms (2.35ms) |
| [pyconvhg_resnet50](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.pyconvhg_resnet50) | 38.41ms (0.33ms) | 301.03ms (12.39ms) |
| [darknet24](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.darknet24) | 3.94ms (1.08ms) | 29.39ms (0.78ms) |
| [darknet19](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.darknet19) | 3.17ms (0.59ms) | 26.36ms (2.80ms) |
| [darknet53](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.darknet53) | 7.12ms (1.35ms) | 53.20ms (1.17ms) |
| [cspdarknet53](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.cspdarknet53) | 6.41ms (0.21ms) | 48.05ms (3.68ms) |
| [cspdarknet53_mish](https://frgfm.github.io/Holocron/latest/models.html#holocron.models.cspdarknet53_mish) | 6.88ms (0.51ms) | 67.78ms (2.90ms) |

**The reported latency for RepVGG models is the one of the reparametrized version**

This benchmark was performed over 100 iterations on (224, 224) inputs, on a laptop to better reflect performances that can be expected by common users. The hardware setup includes an [Intel(R) Core(TM) i7-10750H](https://ark.intel.com/content/www/us/en/ark/products/201837/intel-core-i710750h-processor-12m-cache-up-to-5-00-ghz.html) for the CPU, and a [NVIDIA GeForce RTX 2070 with Max-Q Design](https://www.nvidia.com/fr-fr/geforce/graphics-cards/rtx-2070/) for the GPU.

You can run this latency benchmark for any model on your hardware as follows:

```bash
python scripts/eval_latency.py rexnet1_0x
```

*All script arguments can be checked using `python scripts/eval_latency.py --help`*

### Docker container

If you wish to deploy containerized environments, you can use the provided Dockerfile to build a docker image:

```shell
docker build . -t
```

### Minimal API template

Looking for a boilerplate to deploy a model from Holocron with a REST API? Thanks to the wonderful [FastAPI](https://github.com/tiangolo/fastapi) framework, you can do this easily.

#### Deploy your API locally

Run your API in a docker container as follows:

```shell
cd api/
make lock-api
make run-api
```

*In order to stop the container, use `make stop-api`*

#### What you have deployed

Your API is now running on port 8080, with its documentation http://localhost:8080/redoc and requestable routes:

```python
import requests
with open('/path/to/your/img.jpeg', 'rb') as f:
data = f.read()
response = requests.post("http://localhost:8080/classification", files={'file': data}).json()
```

## Citation

If you wish to cite this project, feel free to use this [BibTeX](http://www.bibtex.org/) reference:

```bibtex
@software{Fernandez_Holocron_2020,
author = {Fernandez, François-Guillaume},
month = {5},
title = {{Holocron}},
url = {https://github.com/frgfm/Holocron},
year = {2020}
}
```

## Contributing

Any sort of contribution is greatly appreciated!

You can find a short guide in [`CONTRIBUTING`](CONTRIBUTING.md) to help grow this project!

## License

Distributed under the Apache 2.0 License. See [`LICENSE`](LICENSE) for more information.