Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/friesischscott/uncertaintyquantification.jl
Uncertainty Quantification in Julia
https://github.com/friesischscott/uncertaintyquantification.jl
hacktoberfest julia metamodeling monte-carlo-simulation reliability-analysis sensitivity-analysis uncertainty-quantification
Last synced: 8 days ago
JSON representation
Uncertainty Quantification in Julia
- Host: GitHub
- URL: https://github.com/friesischscott/uncertaintyquantification.jl
- Owner: FriesischScott
- License: mit
- Created: 2019-06-30T13:49:45.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-11-05T10:20:46.000Z (9 days ago)
- Last Synced: 2024-11-05T10:39:52.932Z (9 days ago)
- Topics: hacktoberfest, julia, metamodeling, monte-carlo-simulation, reliability-analysis, sensitivity-analysis, uncertainty-quantification
- Language: Julia
- Homepage:
- Size: 20.5 MB
- Stars: 31
- Watchers: 5
- Forks: 11
- Open Issues: 34
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
UncertaintyQuantification.jl
============================![Build Status](https://github.com/friesischscott/UncertaintyQuantification.jl/workflows/CI/badge.svg)
[![Coverage Status](https://codecov.io/gh/FriesischScott/UncertaintyQuantification.jl/branch/master/graph/badge.svg?token=LfslMAoWvA)](https://codecov.io/gh/FriesischScott/UncertaintyQuantification.jl)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3993816.svg)](https://doi.org/10.5281/zenodo.3993816)[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://friesischscott.github.io/UncertaintyQuantification.jl/stable)
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://friesischscott.github.io/UncertaintyQuantification.jl/dev)A Julia package for uncertainty quantification. Current functionality includes:
* Simulation-based reliability analysis
* Monte Carlo simulation
* Quasi Monte Carlo simulation (Sobol, Halton, Latin Hypercube, Lattice Rule)
* Line Sampling
* Subset Simulation
* Sensitivity analysis
* Gradients
* Sobol indices
* Metamodeling
* Polyharmonic splines
* Polynomial Chaos Expansion
* Response Surface Methodology
* Third-party solvers
* Connect to any solver by injecting random samples into source files
* HPC interfacing with slurm