Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/fukatani/stacked_generalization

Library for machine learning stacking generalization.
https://github.com/fukatani/stacked_generalization

machine-learning

Last synced: 3 months ago
JSON representation

Library for machine learning stacking generalization.

Awesome Lists containing this project

README

        

|Build Status|

stacked\_generalization
=======================

Implemented machine learning ***stacking technic[1]*** as handy library
in Python. Feature weighted linear stacking is also available. (See
https://github.com/fukatani/stacked\_generalization/tree/master/stacked\_generalization/example)

Including simple model cache system Joblibed claasifier and Joblibed
Regressor.

Feature
-------

1) Any scikit-learn model is availavle for Stage 0 and Stage 1 model.
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

And stacked model itself has the same interface as scikit-learn library.
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

You can replace model such as *RandomForestClassifier* to *stacked
model* easily in your scripts. And multi stage stacking is also easy.

ex.

.. code:: python

from stacked_generalization.lib.stacking import StackedClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression, RidgeClassifier
from sklearn import datasets, metrics
iris = datasets.load_iris()

# Stage 1 model
bclf = LogisticRegression(random_state=1)

# Stage 0 models
clfs = [RandomForestClassifier(n_estimators=40, criterion = 'gini', random_state=1),
GradientBoostingClassifier(n_estimators=25, random_state=1),
RidgeClassifier(random_state=1)]

# same interface as scikit-learn
sl = StackedClassifier(bclf, clfs)
sl.fit(iris.target, iris.data)
score = metrics.accuracy_score(iris.target, sl.predict(iris.data))
print("Accuracy: %f" % score)

More detail example is here.
https://github.com/fukatani/stacked\_generalization/blob/master/stacked\_generalization/example/cross\_validation\_for\_iris.py

https://github.com/fukatani/stacked\_generalization/blob/master/stacked\_generalization/example/simple\_regression.py

2) Evaluation model by out-of-bugs score.
'''''''''''''''''''''''''''''''''''''''''

Stacking technic itself uses CV to stage0. So if you use CV for entire
stacked model, ***each stage 0 model are fitted n\_folds squared
times.*** Sometimes its computational cost can be significent, therefore
we implemented CV only for stage1[2].

For example, when we get 3 blends (stage0 prediction), 2 blends are used
for stage 1 fitting. The remaining one blend is used for model test.
Repitation this cycle for all 3 blends, and averaging scores, we can get
oob (out-of-bugs) score ***with only n\_fold times stage0 fitting.***

ex.

.. code:: python

sl = StackedClassifier(bclf, clfs, oob_score_flag=True)
sl.fit(iris.data, iris.target)
print("Accuracy: %f" % sl.oob_score_)

3) Caching stage1 blend\_data and trained model. (optional)
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

If cache is exists, recalculation for stage 0 will be skipped. This
function is useful for stage 1 tuning.

.. code:: python

sl = StackedClassifier(bclf, clfs, save_stage0=True, save_dir='stack_temp')

Feature of Joblibed Classifier / Regressor
------------------------------------------

Joblibed Classifier / Regressor is simple cache system for scikit-learn
machine learning model. You can use it easily by minimum code
modification.

At first fitting and prediction, model calculation is performed
normally. At the same time, model fitting result and prediction result
are saved as *.pkl* and *.csv* respectively.

**At second fitting and prediction, if cache is existence, model and
prediction results will be loaded from cache and never recalculation.**

e.g.

.. code:: python

from sklearn import datasets
from sklearn.cross_validation import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from stacked_generalization.lib.joblibed import JoblibedClassifier

# Load iris
iris = datasets.load_iris()

# Declaration of Joblibed model
rf = RandomForestClassifier(n_estimators=40)
clf = JoblibedClassifier(rf, "rf")

train_idx, test_idx = list(StratifiedKFold(iris.target, 3))[0]

xs_train = iris.data[train_idx]
y_train = iris.target[train_idx]
xs_test = iris.data[test_idx]
y_test = iris.target[test_idx]

# Need to indicate sample for discriminating cache existence.
clf.fit(xs_train, y_train, train_idx)
score = clf.score(xs_test, y_test, test_idx)

See also
https://github.com/fukatani/stacked\_generalization/blob/master/stacked\_generalization/lib/joblibed.py

Software Requirement
--------------------

- Python (2.7 or 3.5 or later)
- numpy
- scikit-learn
- pandas

Installation
------------

::

pip install stacked_generalization

License
-------

MIT License. (http://opensource.org/licenses/mit-license.php)

Copyright
---------

Copyright (C) 2016, Ryosuke Fukatani

Many part of the implementation of stacking is based on the following.
Thanks!
https://github.com/log0/vertebral/blob/master/stacked\_generalization.py

Other
-----

Any contributions (implement, documentation, test or idea...) are
welcome.

References
----------

[1] L. Breiman, "Stacked Regressions", Machine Learning, 24, 49-64
(1996). [2] J. Sill1 et al, "Feature Weighted Linear Stacking",
https://arxiv.org/abs/0911.0460, 2009.

.. |Build Status| image:: https://travis-ci.org/fukatani/stacked_generalization.svg?branch=master
:target: https://travis-ci.org/fukatani/stacked_generalization