Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fxia22/gn.pytorch
https://github.com/fxia22/gn.pytorch
Last synced: 1 day ago
JSON representation
- Host: GitHub
- URL: https://github.com/fxia22/gn.pytorch
- Owner: fxia22
- Created: 2018-11-14T22:20:49.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2018-12-15T06:06:21.000Z (almost 6 years ago)
- Last Synced: 2023-08-02T19:20:13.641Z (over 1 year ago)
- Language: Jupyter Notebook
- Size: 20.2 MB
- Stars: 41
- Watchers: 3
- Forks: 17
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Graph networks for learnable physical simulation
This repository is a partial implementation of [Graph networks as learnable physics engines for inference and control](https://arxiv.org/abs/1806.01242).
## Dependencies
- [DeepMind control suite](https://github.com/deepmind/dm_control)
- Mujoco
- networkx
- pytorch 0.4.1 (other versions untested)## Generate data
Generate data with `gen_data.py` script, you should get control signals and resulting 6-link swimmers states.
![](misc/actions.png)
![](misc/test_0.gif)
## Train GN
Learn data distribution first with `python test_normalizer.py`. It will generate `normalize.pth`. Then run
`python train_gn.py` to train the model. The learning rate schedule corresponds to "fast training" in original paper.## Evaluate GN
`python evaluate_gn.py `