Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/fxia22/neuralfdr
Software accompanying "NeuralFDR: Learning Discovery Thresholds from Hypothesis Features"
https://github.com/fxia22/neuralfdr
Last synced: 1 day ago
JSON representation
Software accompanying "NeuralFDR: Learning Discovery Thresholds from Hypothesis Features"
- Host: GitHub
- URL: https://github.com/fxia22/neuralfdr
- Owner: fxia22
- Created: 2017-04-14T23:19:48.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-06-14T20:12:05.000Z (over 6 years ago)
- Last Synced: 2024-04-16T01:53:49.921Z (7 months ago)
- Language: Python
- Homepage: https://arxiv.org/pdf/1711.01312.pdf
- Size: 17.6 MB
- Stars: 5
- Watchers: 4
- Forks: 5
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# NeuralFDR
Software accompanying "NeuralFDR: Learning Discovery Thresholds from Hypothesis Features", NIPS 2017## Dependencies
You will have to install PyTorch to run the code, follow the instructions from http://pytorch.org## Download the data
Download the data used in the paper from this [dropbox folder](https://www.dropbox.com/sh/wtp58wd60980d6b/AAA4wA60ykP-fDfS5BNsNkiGa?dl=0).## Train a NeuralFDR model
```
python train.py --data data/data_airway.csv --dim 1 --out airway
```The report will be available in airway folder
## Citation
If you use this code, please cite
```
@inproceedings{xia2017neuralfdr,
title={NeuralFDR: Learning Discovery Thresholds from Hypothesis Features},
author={Xia, Fei and Zhang, Martin J and Zou, James Y and Tse, David},
booktitle={Advances in Neural Information Processing Systems},
pages={1540--1549},
year={2017}
}
```