Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/fyt3rp4til/fake-news-detection-nlp


https://github.com/fyt3rp4til/fake-news-detection-nlp

nltk numpy pandas python3 sklearn tensorflow

Last synced: 4 days ago
JSON representation

Awesome Lists containing this project

README

        

# Fake News Detection

## Overview
The topic of fake news detection on social media has recently attracted tremendous attention. The basic countermeasure of comparing websites against a list of labeled fake news sources is inflexible, and so a machine learning approach is desirable. Our project aims to use Natural Language Processing to detect fake news directly, based on the text content of news articles.

![Screenshot 2023-09-27 022804](https://github.com/Sudhanshu21xx/Fake-News-Detection-NLP/assets/113416452/6c940d88-d823-456a-b666-dc61e331aef3)

## Dataset Description

* True.csv: True collected news from various articles, sources.
* Fake.csv: Fake collected news from various articles, sources.

![Screenshot 2023-09-27 022942](https://github.com/Sudhanshu21xx/Fake-News-Detection-NLP/assets/113416452/98913d1f-8e61-4dd9-ae13-6d83ba92f34f)

## Try It Out

1. Clone the repo to your local machine-
`> https://github.com/Sudhanshu21xx/Fake-News-Detection-NLP.git`
`> cd Fake-news-Detection`

2. Make sure you have all the dependencies installed-
* python 3.6+
* numpy
* tensorflow
* pandas
* sklearn
* nltk
* For nltk, run these commands in your notebook --
* `>>> import nltk`
* `>>> nltk.download()`}

## Methodologies Used

* [Tokenization](https://www.geeksforgeeks.org/nlp-how-tokenizing-text-sentence-words-works/)
* [Stemming](https://www.geeksforgeeks.org/introduction-to-stemming/)
* [Stopword Removal](https://www.geeksforgeeks.org/removing-stop-words-nltk-python/)
* [Splitting Data](https://www.geeksforgeeks.org/how-to-split-a-dataset-into-train-and-test-sets-using-python/)
* [Vectorization](https://www.geeksforgeeks.org/feature-extraction-techniques-nlp/)

## Model Used

* [Logestic Regression](https://www.geeksforgeeks.org/understanding-logistic-regression/)
* [Passive Agressive Classifier](https://www.geeksforgeeks.org/passive-aggressive-classifiers/)