An open API service indexing awesome lists of open source software.

https://github.com/g0bel1n/mc_ising

MC_Ising is an implementation of Monte-Carlo methods for image denoising using the Ising Model
https://github.com/g0bel1n/mc_ising

image-denoising ising-model-2d monte-carlo

Last synced: 3 months ago
JSON representation

MC_Ising is an implementation of Monte-Carlo methods for image denoising using the Ising Model

Awesome Lists containing this project

README

        

Image denoising using ISING MODEL and GIBBS SAMPLING


Mathis Matthieu, Benjamin Pipaud, Lucas Saban. MC course @Ensae

---


Ising Model denoising using hyperparameter estimation and MCMC techniques.


## Examples

With systematic scan on the left and randomized scan on the right:


example

random_gif

## ⚡️ On Boarding

```shell
pip install -r requirements.txt
```

Then :

```shell
main.py --findsigma True --alpha 0.0 #etc...
```

The arguments available are :

- `alpha` : The alpha parameter of the Ising Model, default value is 0
- `beta`: The beta parameter of the Ising Model, default value is 1.3
- `sigma` : Variance of the gaussian noise, default value is 179 (for 8 bit images)
- `findsigma` : If set to True, the denoising will be done without being given the value of sigma, default value False
- `g` : If set to true a gif will be produced. Default value to True.
- `b` : Number of burn in steps. Default to 40
- `ns`: Number of sampling steps. Default to 5
- `imp`: Path of the raw image. Default to 'data/input/test_img.jpeg'