Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/g0bel1n/time-series-representation-learning


https://github.com/g0bel1n/time-series-representation-learning

Last synced: about 1 month ago
JSON representation

Awesome Lists containing this project

README

        

Time Series and representation learning : CNN vs Transformers

Code for PatchTST is from https://github.com/yuqinie98/PatchTST.

| Trainings | pretrain on | finetuned on | done |
| ------------------------ | ----------- | ------------ | ---- |
| baseline Transformer | ettm1 | ettm1 | |
| financial TS Transformer | ive | ive | |

### ToDo List

- Train Patcht TST on
- [ ] ettm1, ive and GunPoint
- [ ] IVE
- [ ] Gunpoint
- Train a MCNN on:
- [ ] ettm1, ive and GunPoint
- [ ] IVE
- [ ] Gunpoint
- Look at for GunPoint
- [ ] CAM
- [ ] MDS
- [ ] Attention Map
- [ ] Same for IVE-classification

### Command lines

for PachTST

```
python patchtst_pretrain.py --dset_pretrain ettm1 --mask_ratio .4 --stride 8 --patch_len 16 --context_points 336 --n_epochs_pretrain 100 --batch_size 128
````

For resnet
```
python resnet_train.py --dset ettm1 --context_points 336 --n_epochs 100 --batch_size 256 --lr 0.01
```

```
python resnet_train.py --dset gunpoint --batch_size 8 --head_type classification --context_points 150 --target_points 2 --revin 0 --n_epochs 20
```

```
python patchtst_supervised.py --dset gunpoint --batch_size 8 --patch_len 16 --stride 8 --head_type classification --features U --context_points 150 --target_points=2 --revin 0 --n_epochs 30 --is_train 1
```

```
python patchtst_finetune.py --dset_finetune ettm1 --patch_len 16 --stride 8 --batch_size 256 --context_points 336 --features M --target_points 2 --pretrained_model saved_models/ettm1/patchtst/patchtst_pretrained_cw336_patch16_stride8_epochs-pretrain100_mask0.4_model1.pth --is_finetune 1 --revin 0 --head_type classification --classification .05
```

```
python resnet_train.py --dset gunpoint --batch_size 32 --head_type classification --context_points 150 --target_points 2 --revin 0 --n_epochs 20 --classification .05
```