Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gaborvecsei/barlow-twins
Clean Tensorflow 2 Implementation of the Barlow Twins self-supervised learning method
https://github.com/gaborvecsei/barlow-twins
embeddings keras python self-supervised-learning semi-supervised-learning tensorflow tensorflow2
Last synced: 12 days ago
JSON representation
Clean Tensorflow 2 Implementation of the Barlow Twins self-supervised learning method
- Host: GitHub
- URL: https://github.com/gaborvecsei/barlow-twins
- Owner: gaborvecsei
- Created: 2021-06-18T16:09:04.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2021-06-28T16:16:38.000Z (over 3 years ago)
- Last Synced: 2024-11-07T21:45:47.359Z (2 months ago)
- Topics: embeddings, keras, python, self-supervised-learning, semi-supervised-learning, tensorflow, tensorflow2
- Language: Jupyter Notebook
- Homepage:
- Size: 3.41 MB
- Stars: 4
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Barlow Twins
Unofficial Tensorflow 2 implementation of the [Barlow Twins Self-Supervised Learning method](https://arxiv.org/abs/2103.03230)
```bash
$ python train.py --name my_test /data
$ python train.py --help
``````python
model = barlow_twins.BarlowTwinsModel(input_height=224,
input_width=224,
projection_units=8192,
drop_projection_layer=True)
model.load_weights(saved_weights, by_name=True)
# Input image values should be in range [0, 255] --> preprocessing is built into the model
embedding = model(image)
```# Results
**Convergence (Oxford 102 Flowers**
# Setup
## Pip/Conda
```bash
pip install -r requirements.txt
```## Docker
**Build**
```bash
docker build -t barlow .
```**Run a training**
```bash
docker run --rm \
-t \
-u $(id -u):$(id -g) \
--gpus all \
-v $(pwd):/code \
-v :/data \
-w /code \
barlow \
python train.py --name my_test /data
```# Citations
```bibtex
@article{DBLP:journals/corr/abs-2103-03230,
author = {Jure Zbontar and Li Jing and Ishan Misra and Yann LeCun and St{\'{e}}phane Deny},
title = {Barlow Twins: Self-Supervised Learning via Redundancy Reduction},
journal = {CoRR},
volume = {abs/2103.03230},
year = {2021},
url = {https://arxiv.org/abs/2103.03230},
archivePrefix = {arXiv},
eprint = {2103.03230},
timestamp = {Mon, 15 Mar 2021 17:30:55 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2103-03230.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```# TODOs
- Evaluation
- Linear evaluation
- KNN eval
- Choose or use custom backbone
- Save model
- Save only when loss improved