Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/gabrielchua/ragxplorer

Open-source tool to visualise your RAG 🔮
https://github.com/gabrielchua/ragxplorer

interactive llm python rag streamlit visualization

Last synced: about 1 month ago
JSON representation

Open-source tool to visualise your RAG 🔮

Awesome Lists containing this project

README

        

# RAGxplorer 🦙🦺

[![PyPI version](https://img.shields.io/pypi/v/ragxplorer.svg)](https://pypi.org/project/ragxplorer/)
[![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://ragxplorer.streamlit.app/)

RAGxplorer is a tool to build Retrieval Augmented Generation (RAG) visualisations.

# Quick Start âš¡

**Installation**

```bash
pip install ragxplorer
```

**Usage**

```python
from ragxplorer import RAGxplorer
client = RAGxplorer(embedding_model="thenlper/gte-large")
client.load_pdf("presentation.pdf", verbose=True)
client.visualize_query("What are the top revenue drivers for Microsoft?")
```

A quickstart Jupyter notebook tutorial on how to use `ragxplorer` can be found at

Or as a Colab notebook:


Open In Colab

# Streamlit Demo 🔎

The demo can be found here:

View the project [here](https://github.com/gabrielchua/RAGxplorer-demo)

# Contributing 👋

Contributions to RAGxplorer are welcome. Please read our [contributing guidelines (WIP)](.github/CONTRIBUTING.md) for details.

# License 👀

This project is licensed under the MIT license - see the [LICENSE](LICENSE) for details.

# Acknowledgments 💙

- DeepLearning.AI and Chroma for the inspiration and code labs in their [Advanced Retrival](https://www.deeplearning.ai/short-courses/advanced-retrieval-for-ai/) course.
- The Streamlit community for the support and resources.