https://github.com/gagneurlab/autocorrection
The autoencoder implementation for the OUTRIDER package
https://github.com/gagneurlab/autocorrection
autoencoder expression-analysis outlier-detection pyhton rna-seq
Last synced: about 1 month ago
JSON representation
The autoencoder implementation for the OUTRIDER package
- Host: GitHub
- URL: https://github.com/gagneurlab/autocorrection
- Owner: gagneurlab
- License: mit
- Created: 2018-03-24T00:52:07.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-09T03:02:28.000Z (about 7 years ago)
- Last Synced: 2025-03-25T14:38:56.303Z (2 months ago)
- Topics: autoencoder, expression-analysis, outlier-detection, pyhton, rna-seq
- Language: Jupyter Notebook
- Homepage:
- Size: 30.1 MB
- Stars: 2
- Watchers: 4
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGELOG.rst
- Contributing: CONTRIBUTING.rst
- License: LICENSE
- Authors: AUTHORS.rst
Awesome Lists containing this project
README
========
Overview
========.. start-badges
.. list-table::
:stub-columns: 1* - package
- | |Version| |Build| |Wheel| |License|.. |version| image:: https://img.shields.io/pypi/v/autoCorrection.svg
:alt: PyPI Package latest release
:target: https://pypi.python.org/pypi/autoCorrection.. |Build| image:: https://travis-ci.org/gagneurlab/autoCorrection.svg?branch=master
:alt: Build status
:target: https://travis-ci.org/gagneurlab/autoCorrection.. |wheel| image:: https://img.shields.io/pypi/wheel/autoCorrection.svg
:alt: PyPI Wheel
:target: https://pypi.python.org/pypi/autoCorrection.. |License| image:: https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000
:alt: License MIT
:target: https://github.com/gagneurlab/autoCorrection/blob/master/LICENSE.. end-badges
* Free software: MIT license
Activate virtual environment
==================
Together with the autoCorrection package you will get'tensorflow',
'keras',
'numpy',
'kopt',
'scipy',
'h5py',
'sklearn',
'pandas',
'statsmodels',
'pytest'packages automatically installed, if not present.
If you don't wannt to install these packages globally, please use virtual environment.
If you have problems with virtualenv, installing using conda may help:
(Installation of conda: https://conda.io/docs/user-guide/install/index.html)
Make sure you are using python 3.
conda create -n mypyth3 python=3.6
source activate mypyth3
conda install virtualenv
activate new environment in active python 3 environment:
virtualenv env-with-autoCorrection
source env-with-autoCorrection/bin/activate
Check if you are still using python 3:
python --version
Package Installation
============::
pip install autoCorrection
Deactivate virtual environment
============::
deactivate
Usage
============::
#in python:
python
import autoCorrection
import numpy as np
counts = np.random.negative_binomial(n = 20, p=0.2, size = (10,8))
sf = np.ones((10,8))
corrector = autoCorrection.correctors.AECorrector()
c = corrector.correct(counts = counts, size_factors = sf)#in R:
library(reticulate)
autoCorrection <- import("autoCorrection")
corrected <- autoCorrection$correctors$AECorrector(model_name, model_directory)$correct(COUNTS, SIZE_FACTORS, only_predict=FALSE)Documentation
=============https://i12g-gagneurweb.in.tum.de/public/docs/autocorrection/