Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gagolews/clustering-benchmarks
A framework for benchmarking clustering algorithms
https://github.com/gagolews/clustering-benchmarks
benchmark-suite benchmarking cluster cluster-analysis clustering clustering-algorithms clustering-benchmarks clustering-evaluation data data-science dataset datasets ground-truth machine-learning
Last synced: 7 days ago
JSON representation
A framework for benchmarking clustering algorithms
- Host: GitHub
- URL: https://github.com/gagolews/clustering-benchmarks
- Owner: gagolews
- License: other
- Created: 2020-04-21T08:22:08.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-11-12T14:40:09.000Z (2 months ago)
- Last Synced: 2025-01-01T21:11:55.345Z (14 days ago)
- Topics: benchmark-suite, benchmarking, cluster, cluster-analysis, clustering, clustering-algorithms, clustering-benchmarks, clustering-evaluation, data, data-science, dataset, datasets, ground-truth, machine-learning
- Language: Python
- Homepage: http://clustering-benchmarks.gagolewski.com/
- Size: 193 MB
- Stars: 36
- Watchers: 4
- Forks: 6
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Changelog: NEWS
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
Awesome Lists containing this project
README
# [A Framework for Benchmarking Clustering Algorithms](https://clustering-benchmarks.gagolewski.com/)Maintained/edited/authored by [Marek Gagolewski](https://www.gagolewski.com).
This project aims to:
* **aggregate, polish, and standardise the existing clustering benchmark
batteries** referred to across the machine learning and data mining
literature,
* introduce **new datasets** of different dimensionalities,
sizes, and cluster types,
* propose a **consistent methodology** for evaluating clustering algorithms.See for a detailed description.
**How to cite**:
Gagolewski M., A framework for benchmarking clustering algorithms,
*SoftwareX* **20**, 2022, 101270, ,
DOI: [10.1016/j.softx.2022.101270](https://doi.org/10.1016/j.softx.2022.101270).