Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gajendrasharma-github/exploratory-data-analysis
This Repository contains all EDA projects
https://github.com/gajendrasharma-github/exploratory-data-analysis
data-visualization eda exploratory-data-analysis
Last synced: about 2 months ago
JSON representation
This Repository contains all EDA projects
- Host: GitHub
- URL: https://github.com/gajendrasharma-github/exploratory-data-analysis
- Owner: gajendrasharma-github
- Created: 2024-08-16T12:30:48.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-08-19T17:38:42.000Z (5 months ago)
- Last Synced: 2024-08-20T15:20:19.749Z (5 months ago)
- Topics: data-visualization, eda, exploratory-data-analysis
- Language: Jupyter Notebook
- Homepage:
- Size: 8.87 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Guide to all the projects
**1. Exploring Big Mart Sales** [Link](https://github.com/gajendrasharma-github/Exploratory-Data-Analysis/blob/main/EDA_Big_Mart_Sales.ipynb)
**2. Exploring Student's Grade Dataset** [Link](https://github.com/gajendrasharma-github/EDA-Exploring-Data-to-uncover-hidden-Patterns/blob/main/Students%20Grade%20EDA.ipynb)
**3. Exploring MPG Dataset** [Link](https://github.com/gajendrasharma-github/EDA-Exploring-Data-to-uncover-hidden-Patterns/blob/main/EDA%20-%20MPG%20Dataset.ipynb)
**4. Exploring Iris Dataset** [Link](https://github.com/gajendrasharma-github/EDA-Exploring-Data-to-uncover-hidden-Patterns/blob/main/EDA-Iris%20Dataset.ipynb)
**5. Exploring Penguin Dataset** [Link](https://github.com/gajendrasharma-github/EDA-Exploring-Data-to-uncover-hidden-Patterns/blob/main/Penguin%20EDA.ipynb)
# EDA-Exploring-Data-to-uncover-hidden-Patterns
![image](https://github.com/user-attachments/assets/98421ad5-f3b1-4c93-8534-a91d70c6cdcb)
Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics, often employing data visualization methods.The main purpose of EDA is to help look at data before making any assumptions. It can help identify obvious errors, as well as better understand patterns within the data, detect outliers or anomalous events, find interesting relations among the variables.