Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/garyli1019/pointnet-keras
Keras implementation for Pointnet
https://github.com/garyli1019/pointnet-keras
classification deep-learning keras point-cloud pointnet segmentation
Last synced: about 2 months ago
JSON representation
Keras implementation for Pointnet
- Host: GitHub
- URL: https://github.com/garyli1019/pointnet-keras
- Owner: garyli1019
- License: mit
- Created: 2017-12-31T05:24:42.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2019-10-28T03:41:10.000Z (about 5 years ago)
- Last Synced: 2024-01-21T10:22:38.176Z (about 1 year ago)
- Topics: classification, deep-learning, keras, point-cloud, pointnet, segmentation
- Language: Python
- Homepage:
- Size: 1.65 MB
- Stars: 122
- Watchers: 4
- Forks: 42
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# pointnet-keras
Original tensorflow implementation: https://github.com/charlesq34/pointnetPackage requirement: Python3.6, keras, tensorflow, numpy, matplotlib, h5py
## Results
Segmentation Sample
![seg_sample](images/seg_sample.png)
## How to Run code:
### Classification:
- Download the aligned dataset from [Link](https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip)
- Put all traning `.h5` files under `Prepdata` folder, all testing `.h5` files under `Prepdata_test` folder
- Run train_cls.py. Accuracy rate will be 82.5%, which is slightly lower than the original implementation.### Segmentation:
- Download and unzip the shapenet dataset from [Link](https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_v0.zip).
- Run Seg_dataprep.py then train_seg.py.## Point Architecture
- Input Transformation Net: Input: Nx3 point cloud sample, Output: 3x3 transformation net
![input_transformation_net](images/input_transformation_net.png)- Feature Transformation Net:
![feature_transformation_net](images/feature_transformation_net.png)- Global Feature: Input: Nx3 point cloud sample multiply input T_net. Output: 1*1024 global feature
- Classification Net: Input: Nx3 point cloud sample multiply input T_net. Output: 1x40 softmax prediction
![classification_net](images/classification_net.png)