Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/garywei944/cookiecutter-machine-learning

Cookiecutter template for reproducible machine learning project.
https://github.com/garywei944/cookiecutter-machine-learning

Last synced: 20 days ago
JSON representation

Cookiecutter template for reproducible machine learning project.

Awesome Lists containing this project

README

        

# Cookiecutter Machine Learning

Cookiecutter template for reproducible machine learning projects. The template
is for personal use.

*Inspired
by [drivendata/cookiecutter-data-science](https://github.com/drivendata/cookiecutter-data-science)*
.

## Usage

1. Install `cookiecutter` via pip.

```bash
pip install cookiecutter
```

2. Create new project by the following command

```bash
cookiecutter gh:garywei944/cookiecutter-machine-learning
```

## Directory structure

The directory structure is inspired
by [Cookiecutter Data Science](https://drivendata.github.io/cookiecutter-data-science/)
.

```text
.
├── checkpoints >> saved model checkpoints
├── cli.py >> command line interface
├── config.py >> load configurations
├── configs >> experiments configurations
│   ├── baseline.yml
│   ├── latest.yml
│   └── toy.yml
├── data >> data directory
│   ├── external >> external data
│   ├── interim >> intermedia, temporary data
│   ├── processed >> generated, final dataset
│   └── raw >> immutable raw data
├── environment.yml >> python package dependencies
├── LICENSE >> LICENSE
├── Makefile >> some useful commands
├── notebooks >> jupyter notebooks that perform experiments
│   └── template.ipynb
├── README.md >> README
├── references >> explanatory notebooks and docs
├── reports >> result figures for report publication
│   └── figures
├── sandbox >> sandbox folder for workspace
├── scripts >> standalone scripts
├── set_up_notebook.sh >> setup remote jupyter port on UMass gypsum
└── src >> pipeline source code
├── data >> make dataset from raw data
│   ├── __init__.py
│   └── make_dataset.py
├── features >> make features from processed data
│   ├── build_features.py
│   └── __init__.py
├── __init__.py
├── models >> model implementation
│   ├── __init__.py
│   ├── predict_model.py
│   └── train_model.py
└── visualization >> result visualization
├── __init__.py
└── visualize.py
```