Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/garywei944/cookiecutter-machine-learning
Cookiecutter template for reproducible machine learning project.
https://github.com/garywei944/cookiecutter-machine-learning
Last synced: 20 days ago
JSON representation
Cookiecutter template for reproducible machine learning project.
- Host: GitHub
- URL: https://github.com/garywei944/cookiecutter-machine-learning
- Owner: garywei944
- License: mit
- Created: 2022-03-31T00:07:50.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-07-05T17:04:22.000Z (6 months ago)
- Last Synced: 2024-07-05T22:15:14.093Z (6 months ago)
- Language: Python
- Size: 87.9 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Cookiecutter Machine Learning
Cookiecutter template for reproducible machine learning projects. The template
is for personal use.*Inspired
by [drivendata/cookiecutter-data-science](https://github.com/drivendata/cookiecutter-data-science)*
.## Usage
1. Install `cookiecutter` via pip.
```bash
pip install cookiecutter
```2. Create new project by the following command
```bash
cookiecutter gh:garywei944/cookiecutter-machine-learning
```## Directory structure
The directory structure is inspired
by [Cookiecutter Data Science](https://drivendata.github.io/cookiecutter-data-science/)
.```text
.
├── checkpoints >> saved model checkpoints
├── cli.py >> command line interface
├── config.py >> load configurations
├── configs >> experiments configurations
│ ├── baseline.yml
│ ├── latest.yml
│ └── toy.yml
├── data >> data directory
│ ├── external >> external data
│ ├── interim >> intermedia, temporary data
│ ├── processed >> generated, final dataset
│ └── raw >> immutable raw data
├── environment.yml >> python package dependencies
├── LICENSE >> LICENSE
├── Makefile >> some useful commands
├── notebooks >> jupyter notebooks that perform experiments
│ └── template.ipynb
├── README.md >> README
├── references >> explanatory notebooks and docs
├── reports >> result figures for report publication
│ └── figures
├── sandbox >> sandbox folder for workspace
├── scripts >> standalone scripts
├── set_up_notebook.sh >> setup remote jupyter port on UMass gypsum
└── src >> pipeline source code
├── data >> make dataset from raw data
│ ├── __init__.py
│ └── make_dataset.py
├── features >> make features from processed data
│ ├── build_features.py
│ └── __init__.py
├── __init__.py
├── models >> model implementation
│ ├── __init__.py
│ ├── predict_model.py
│ └── train_model.py
└── visualization >> result visualization
├── __init__.py
└── visualize.py
```