Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gauravpandeylab/eipy
Ensemble Integration: a customizable pipeline for generating multi-modal, heterogeneous ensembles
https://github.com/gauravpandeylab/eipy
classification ensemble interpretation machine-learning multimodal nested-cross-validation predictive-modeling scikit-learn
Last synced: 3 months ago
JSON representation
Ensemble Integration: a customizable pipeline for generating multi-modal, heterogeneous ensembles
- Host: GitHub
- URL: https://github.com/gauravpandeylab/eipy
- Owner: GauravPandeyLab
- License: gpl-3.0
- Created: 2022-09-01T16:02:22.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-10-08T01:26:21.000Z (4 months ago)
- Last Synced: 2024-10-10T08:20:57.166Z (3 months ago)
- Topics: classification, ensemble, interpretation, machine-learning, multimodal, nested-cross-validation, predictive-modeling, scikit-learn
- Language: Python
- Homepage: https://eipy.readthedocs.io/en/latest/
- Size: 700 KB
- Stars: 20
- Watchers: 2
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.rst
- License: COPYING
Awesome Lists containing this project
README
|Tests| |Coverage| |ReadTheDocs| |PythonVersion| |PyPI| |Black| |License|
.. |Tests| image:: https://github.com/GauravPandeyLab/eipy/actions/workflows/tests.yml/badge.svg
:target: https://github.com/GauravPandeyLab/eipy/actions/workflows/tests.yml.. |Coverage| image:: https://codecov.io/gh/GauravPandeyLab/eipy/graph/badge.svg?token=M2AU2XWJB8
:target: https://codecov.io/gh/GauravPandeyLab/eipy.. |ReadTheDocs| image:: https://readthedocs.org/projects/eipy/badge/?version=latest
:target: https://eipy.readthedocs.io/en/latest/.. |PyPI| image:: https://img.shields.io/pypi/v/ensemble-integration
:target: https://pypi.org/project/ensemble-integration/.. |PythonVersion| image:: https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue
.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black.. |License| image:: https://img.shields.io/badge/License-GPLv3-blue
:target: https://github.com/GauravPandeyLab/eipy/blob/main/COPYING``ensemble-integration``: Integrating multi-modal data for predictive modeling
==============================================================================``ensemble-integration`` (or ``eipy``) leverages multi-modal data to build classifiers using a late fusion approach.
In eipy, base predictors are trained on each modality before being ensembled at the late stage.This implementation of eipy can utilize `sklearn-like `_ models only, therefore, for unstructured data,
e.g. images, it is recommended to perform feature selection prior to using eipy. We hope to allow for a wider range of base predictors,
i.e. deep learning methods, in future releases. A key feature of ``eipy`` is its built-in nested cross-validation approach, allowing for a
fair comparison of a collection of user-defined ensemble methods.Documentation including tutorials are available at `https://eipy.readthedocs.io/en/latest/ `_.
Installation
------------As usual it is recommended to set up a virtual environment prior to installation.
You can install ensemble-integration with pip:``pip install ensemble-integration``
Citation
--------If you use ``ensemble-integration`` in a scientific publication please cite the following:
Jamie J. R. Bennett, Yan Chak Li and Gaurav Pandey. *An Open-Source Python Package for Multi-modal Data Integration using Heterogeneous Ensembles*, https://doi.org/10.48550/arXiv.2401.09582.
Yan Chak Li, Linhua Wang, Jeffrey N Law, T M Murali, Gaurav Pandey. *Integrating multimodal data through interpretable heterogeneous ensembles*, Bioinformatics Advances, Volume 2, Issue 1, 2022, vbac065, https://doi.org/10.1093/bioadv/vbac065.